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ABSTRACT
The “conversion rate” of spam — the probability that an unso-
licited e-mail will ultimately elicit a “sale” — underlies the entire
spam value proposition. However, our understanding of this critical
behavior is quite limited, and the literature lacks any quantitative
study concerning its true value. In this paper we present a method-
ology for measuring the conversion rate of spam. Using a parasitic
infiltration of an existing botnet’s infrastructure, we analyze two
spam campaigns: one designed to propagate a malware Trojan, the
other marketing on-line pharmaceuticals. For nearly a half billion
spam e-mails we identify the number that are successfully deliv-
ered, the number that pass through popular anti-spam filters, the
number that elicit user visits to the advertised sites, and the number
of “sales” and “infections” produced.

Categories and Subject Descriptors
K.4.1 [Public Policy Issues]: ABUSE AND CRIME INVOLVING
COMPUTERS

General Terms
Measurement, Security, Economics

Keywords
Spam, Unsolicited Email, Conversion

1. INTRODUCTION
Spam-based marketing is a curious beast. We all receive the ad-

vertisements — “Excellent hardness is easy!” — but few of us have
encountered a person who admits to following through on this of-
fer and making a purchase. And yet, the relentlessness by which
such spam continually clogs Internet inboxes, despite years of en-
ergetic deployment of anti-spam technology, provides undeniable
testament that spammers find their campaigns profitable. Someone
is clearly buying. But how many, how often, and how much?
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Unraveling such questions is essential for understanding the eco-
nomic support for spam and hence where any structural weaknesses
may lie. Unfortunately, spammers do not file quarterly financial
reports, and the underground nature of their activities makes third-
party data gathering a challenge at best. Absent an empirical foun-
dation, defenders are often left to speculate as to how successful
spam campaigns are and to what degree they are profitable. For ex-
ample, IBM’s Joshua Corman was widely quoted as claiming that
spam sent by the Storm worm alone was generating “millions and
millions of dollars every day” [2]. While this claim could in fact be
true, we are unaware of any public data or methodology capable of
confirming or refuting it.

The key problem is our limited visibility into the three basic pa-
rameters of the spam value proposition: the cost to send spam, off-
set by the “conversion rate” (probability that an e-mail sent will
ultimately yield a “sale”), and the marginal profit per sale. The first
and last of these are self-contained and can at least be estimated
based on the costs charged by third-party spam senders and through
the pricing and gross margins offered by various Internet market-
ing “affiliate programs”.1 However, the conversion rate depends
fundamentally on group actions — on what hundreds of millions
of Internet users do when confronted with a new piece of spam —
and is much harder to obtain. While a range of anecdotal numbers
exist, we are unaware of any well-documented measurement of the
spam conversion rate.2

In part, this problem is methodological. There are no apparent
methods for indirectly measuring spam conversion. Thus, the only
obvious way to extract this data is to build an e-commerce site,
market it via spam, and then record the number of sales. Moreover,
to capture the spammer’s experience with full fidelity, such a study
must also mimic their use of illicit botnets for distributing e-mail
and proxying user responses. In effect, the best way to measure
spam is to be a spammer.

In this paper, we have effectively conducted this study, though
sidestepping the obvious legal and ethical problems associated with
sending spam.3 Critically, our study makes use of an existing spam-

1Our cursory investigations suggest that commissions on pharma-
ceutical affiliate programs tend to hover around 40-50%, while the
retail cost for spam delivery has been estimated at under $80 per
million [22].
2The best known among these anecdotal figures comes from the
Wall Street Journal’s 2003 investigation of Howard Carmack (a.k.a
the “Buffalo Spammer”), revealing that he obtained a 0.00036 con-
version rate on ten million messages marketing an herbal stimu-
lant [4].
3We conducted our study under the ethical criteria of ensuring neu-
tral actions so that users should never be worse off due to our ac-



ming botnet. By infiltrating its command and control infrastructure
parasitically, we convinced it to modify a subset of the spam it al-
ready sends, thereby directing any interested recipients to servers
under our control, rather than those belonging to the spammer. In
turn, our servers presented Web sites mimicking those actually
hosted by the spammer, but “defanged” to remove functionality
that would compromise the victim’s system or receive sensitive per-
sonal information such as name, address or credit card information.

Using this methodology, we have documented three spam cam-
paigns comprising over 469 million e-mails. We identified how
much of this spam is successfully delivered, how much is filtered
by popular anti-spam solutions, and, most importantly, how many
users “click-through” to the site being advertised (response rate)
and how many of those progress to a “sale” or “infection” (conver-
sion rate).

The remainder of this paper is structured as follows. Section 2
describes the economic basis for spam and reviews prior research
in this area. Section 3 describes the Storm botnet, and Section 4
describes our experimental methodology using Storm. Section 5
describes our spam filtering and conversion results, Section 6 an-
alyzes the effects of blacklisting on spam delivery, and Section 7
analyzes the possible influences on spam responses. We synthesize
our findings in Section 8 and conclude.

2. BACKGROUND
Direct marketing has a rich history, dating back to the 19th cen-

tury distribution of the first mail-order catalogs. What makes direct
marketing so appealing is that one can directly measure its return
on investment. For example, the Direct Mail Association reports
that direct mail sales campaigns produce a response rate of 2.15
percent on average [5]. Meanwhile, rough estimates of direct mail
cost per mille (CPM) – the cost to address, produce and deliver
materials to a thousand targets – range between $250 and $1000.
Thus, following these estimates it might cost $250,000 to send out
a million solicitations, which might then produce 21,500 responses.
The cost of developing these prospects (roughly $12 each) can be
directly computed and, assuming each prospect completes a sale of
an average value, one can balance this revenue directly against the
marketing costs to determine the profitability of the campaign. As
long as the product of the conversion rate and the marginal profit
per sale exceeds the marginal delivery cost, the campaign is prof-
itable.

Given this underlying value proposition, it is not at all surpris-
ing that bulk direct e-mail marketing emerged very quickly after
e-mail itself. The marginal cost to send an e-mail is tiny and, thus,
an e-mail-based campaign can be profitable even when the conver-
sion rate is negligible. Unfortunately, a perverse byproduct of this
dynamic is that sending as much spam as possible is likely to max-
imize profit.

The resulting social nuisance begat a vibrant anti-spam commu-
nity, eventually producing a multi-billion dollar industry focused
on the same problem. However, with each anti-spam innovation
spammers adapted in kind and, while the resulting co-evolution has
not significantly changed the spam problem, it has changed how
spam is purveyed. For example, the advent of real-time IP blacklist-
ing deployed in Mail Transfer Agents (MTAs) forced spammers to
relay their messages through “untainted” third-party hosts — driv-
ing the creation of modern large-scale botnets. Similarly, content-
based anti-spam filters in turn forced spammers to create sophisti-
cated polymorphism engines, modifying each spam message to be

tivities, while strictly reducing harm for those situations in which
user property was at risk.

distinct. As well, it forced them to send even more spam. Thus,
it has been estimated that over 120 billion spam messages are now
sent each day [11].

However, while spam has long been understood to be an eco-
nomic problem, it is only recently that there has been significant
effort in modeling spam economics and understanding the value
proposition from the spammer’s point of view. Rarely do spammers
talk about financial aspects of their activities themselves, though
such accounts do exist [14, 21]. Judge et al. describe a prototypical
model of spam profitability, including both the basic value propo-
sition as well as the impact of anti-spam filtering and law enforce-
ment. They speculate that response rates as low as 0.000001 are
sufficient to maintain profitability [17]. Khong [13] likewise em-
ploys an economic cost model of spam, comparing the success of
several anti-spam strategies. Goodman and Rounthwaite construct
a more complex model, aimed at deriving the cost factors for send-
ing spam, and conclude depressingly that the optimal strategy for
sending spam is to send as fast as possible [9]. Serjantov and Clay-
ton explore these issues from the standpoint of an ISP and try to
understand how to place appropriate incentives around the use of
anti-spam blacklists [19].

However, the work that is most closely related to our own are
the several papers concerning “Stock Spam” [7, 8, 10]. Stock spam
refers to the practice of sending positive “touts” for a low-volume
security in order to manipulate its price and thereby profit on an
existing position in the stock. What distinguishes stock spam is
that it is monetized through price manipulation and not via a sale.
Consequently, it is not necessary to measure the conversion rate
to understand profitability. Instead, profitability can be inferred by
correlating stock spam message volume with changes in the trading
volume and price for the associated stocks.

The work of Ma and Chen is similar to ours in that it analyzes in
detail the structure of a spamming operation. However, their focus
is on redirection chains employed by spammers as a search engine
optimization strategy [20].

3. THE STORM BOTNET
The measurements in this paper are carried out using the Storm

botnet and its spamming agents. While a complete technical de-
scription of Storm is outside the scope of this paper, we review
key mechanisms in Storm’s communication protocols and organi-
zational hierarchy.

Storm is a peer-to-peer botnet that propagates via spam (usu-
ally by directing recipients to download an executable from a Web
site). Storm communicates using two separate protocols: the first
is an encrypted version of the UDP-based Overnet protocol (in turn
based on the Kademlia DHT [16]) and is used primarily as a di-
rectory service to find other nodes. As well, Storm uses a custom
TCP-based protocol for managing command and control — the di-
rections informing each bot what actions it should take. We de-
scribe each of these below.

3.1 Overnet protocol
There are four basic messages to facilitate the basic functioning

of Overnet: Connect, Search, Publicize, and Publish. During the
bootstrap phase, a Storm node only has the initial list of peers that
it was shipped with. To gather more peers Storm chooses a OID
pseudo-randomly from the 128-bit Overnet address space and pro-
ceeds to Connect to all the peers in its bootstrap list. Each available
peer contacted returns a list of up to 20 peers. Storm does this for
a few rounds until it has gathered enough peers to be adequately
connected in Overnet. Once a new node has learned about enough
peers it switches to Publicizing its presence to nearby peers and



Figure 1: The Storm botnet hierarchy.

periodically searching for its own OID to stay connected and learn
about new close-by peers to keep up with churn.

Overnet also provides two messages for storing and finding con-
tent in the network: Publish and Search which export a standard
DHT (key,value) pair interface. However, Storm uses this inter-
face in an unusual way. In particular, the keys encode a dynam-
ically changing rendezvous code that allow Storm nodes to find
each other on demand.

A Storm node generates and uses three rendezvous keys simulta-
neously: one based on the current date, one based on the previous
date, and one based on the next date. To determine the correct date,
Storm first sets the system clock using NTP.

In particular, each key is based on a combination of the time
(with 24-hour resolution) mixed with a random integer between 0
and 31. Thus there are 32 unique Storm keys in use per day but
a single Storm bot will only use 1 of the 32. Because keys are
based on time, Storm uses NTP to sync a bot’s clock and attempts
to normalize the time zone. Even so, to make sure bots around
the world can stay in sync, Storm uses 3 days of keys at once, the
previous, current, and next day.

In turn, these keys are used to rendezvous with Storm nodes that
implement the command and control (C&C) channel. A Storm
node that wishes to offer the C&C service will use the time-based
hashing algorithm to generate a key and encode its own IP address
and TCP port into the value. It will then search for the appropriate
peers close to the key and publish its (key, value) pair to them. A
peer wishing to locate a C&C channel can generate a time-based
key and search for previously published values to decode and con-
nect to the TCP network.

3.2 Storm hierarchy
There are three primary classes of Storm nodes involved in send-

ing spam (shown in Figure 1). Worker bots make requests for work
and, upon receiving orders, send spam as requested. Proxy bots
act as conduits between workers and master servers. Finally, the
master servers provide commands to the workers and receive their
status reports. In our experience there are a very small number of
master servers (typically hosted at so-called “bullet-proof” hosting
centers) and these are likely managed by the botmaster directly.

However, the distinction between worker and proxy is one that
is determined automatically. When Storm first infects a host it tests
if it can be reached externally. If so, then it is eligible to become a
proxy. If not, then it becomes a worker.

3.3 Spam engine
Having decided to become a worker, a new bot first checks

whether it can reach the SMTP server of a popular Web-based mail

provider on TCP port 25. If this check fails the worker will remain
active but not participate in spamming campaigns.4

Figure 2 outlines the broad steps for launching spam campaigns
when the port check is successful. The worker finds a proxy (using
the time-varying protocol described earlier) and then sends an up-
date request (via the proxy) to an associated master server (Step 1),
which will respond with a spam workload task (Step 2). A spam
workload consists of three components: one or more spam tem-
plates, a delivery list of e-mail addresses, and a set of named “dic-
tionaries”. Spam templates are written in a custom macro language
for generating polymorphic messages [15]. The macros insert ele-
ments from the dictionaries (e.g., target e-mail addresses, message
subject lines), random identifiers (e.g., SMTP message identifiers,
IP addresses), the date and time, etc., into message fields and text.
Generated messages appear as if they originate from a valid MTA,
and use polymorphic content for evading spam filters.

Upon receiving a spam workload, a worker bot generates a
unique message for each of the addresses on the delivery list and
attempts to send the message to the MX of the recipient via SMTP
(Step 3). When the worker bot has exhausted its delivery list, it
requests two additional spam workloads and executes them. It then
sends a delivery report back to its proxy (Step 4). The report in-
cludes a result code for each attempted delivery. If an attempt was
successful, it includes the full e-mail address of the recipient; oth-
erwise, it reports an error code corresponding to the failure. The
proxy, in turn, relays these status reports back to the associated
master server.

To summarize, Storm uses a three-level self-organizing hierarchy
comprised of worker bots, proxy bots and master servers. Com-
mand and control is “pull-based”, driven by requests from individ-
ual worker bots. These requests are sent to proxies who, in turn,
automatically relay these requests to master servers and similarly
forward any attendant responses back to to the workers.

4. METHODOLOGY
Our measurement approach is based on botnet infiltration — that

is, insinuating ourselves into a botnet’s “command and control”
(C&C) network, passively observing the spam-related commands
and data it distributes and, where appropriate, actively changing
individual elements of these messages in transit. Storm’s archi-
tecture lends itself particularly well to infiltration since the proxy
bots, by design, interpose on the communications between individ-
ual worker bots and the master servers who direct them. Moreover,
since Storm compromises hosts indiscriminately (normally using
malware distributed via social engineering Web sites) it is straight-
forward to create a proxy bot on demand by infecting a globally
reachable host under our control with the Storm malware.

Figure 2 also illustrates our basic measurement infrastructure. At
the core, we instantiate eight unmodified Storm proxy bots within a
controlled virtual machine environment hosted on VMWare ESX 3
servers. The network traffic for these bots is then routed through a
centralized gateway, providing a means for blocking unanticipated
behaviors (e.g., participation in DDoS attacks) and an interposition
point for parsing C&C messages and “rewriting” them as they pass
from proxies to workers. Most critically, by carefully rewriting the
spam template and dictionary entries sent by master servers, we ar-
range for worker bots to replace the intended site links in their spam
with URLs of our choosing. From this basic capability we synthe-
size experiments to measure the click-through and conversion rates
for several large spam campaigns.

4Such bots are still “useful” for other tasks such as mounting coor-
dinated DDoS attacks that Storm perpetrates from time to time.



Figure 2: The Storm spam campaign dataflow (Section 3.3)
and our measurement and rewriting infrastructure (Section 4).
(1) Workers request spam tasks through proxies, (2) proxies
forward spam workload responses from master servers, (3)
workers send the spam and (4) return delivery reports. Our
infrastructure infiltrates the C&C channels between workers
and proxies.

In the remainder of this section we provide a detailed description
of our Storm C&C rewriting engine, discuss how we use this tool
to obtain empirical estimates for spam delivery, click-through and
conversion rates and describe the heuristics used for differentiating
real user visits from those driven by automated crawlers, honey-
clients, etc. With this context, we then review the ethical basis
upon which these measurements were conducted.

4.1 C&C protocol rewriting
Our runtime C&C protocol rewriter consists of two components.

A custom Click-based network element redirects potential C&C
traffic to a fixed IP address and port, where a user-space proxy
server implemented in Python accepts incoming connections and
impersonates the proxy bots. This server in turn forwards connec-
tions back into the Click element, which redirects the traffic to the
intended proxy bot. To associate connections to the proxy server
with those forwarded by the proxy server, the Click element injects
a SOCKS-style destination header into the flows. The proxy server
uses this header to forward a connection to a particular address and
port, allowing the Click element to make the association. From that
point on, traffic flows transparently through the proxy server where
C&C traffic is parsed and rewritten as required. Rules for rewriting
can be installed independently for templates, dictionaries, and e-
mail address target lists. The rewriter logs all C&C traffic between
worker and our proxy bots, between the proxy bots and the master
servers, and all rewriting actions on the traffic.

Since C&C traffic arrives on arbitrary ports, we designed the
proxy server so that it initially handles any type of connection and
falls back to passive pass-through for any non-C&C traffic. Since

the proxy server needs to maintain a connection for each of the
(many) workers, we use a preforked, multithreaded design. A pool
of 30 processes allowed us to handle the full worker load for the
eight Storm proxy bots at all times.

4.2 Measuring spam delivery
To evaluate the effect of spam filtering along the e-mail delivery

path to user inboxes, we established a collection of test e-mail ac-
counts and arranged to have Storm worker bots send spam to those
accounts. We created multiple accounts at three popular free e-mail
providers (Gmail, Yahoo!, and Hotmail), accounts filtered through
our department commercial spam filtering appliance (a Barracuda
Spam Firewall Model 300 with slightly more permissive spam tag-
ging than the default setting), and multiple SMTP “sinks” at dis-
tinct institutions that accept any message sent to them (these served
as “controls” to ensure that spam e-mails were being successfully
delivered, absent any receiver-side spam filtering). When worker
bots request spam workloads, our rewriter appends these e-mail
addresses to the end of each delivery list. When a worker bot re-
ports success or failure back to the master servers, we remove any
success reports for our e-mail addresses to hide our modifications
from the botmaster.

We periodically poll each e-mail account (both inbox and
“junk/spam” folders) for the messages that it received, and we log
them with their timestamps. However, some of the messages we
receive have nothing to do with our study and must be filtered
out. These messages occur for a range of reasons, including spam
generated by “dictionary bots” that exhaustively target potential e-
mail addresses, or because the addresses we use are unintentionally
“leaked” (this can happen when a Storm worker bot connects to
our proxy and then leaves before it has finished sending its spam;
when it reconnects via a new proxy the delivery report to the mas-
ter servers will include our addresses). To filter such e-mail, we
validate that each message includes both a subject line used by our
selected campaigns and contains a link to one of the Web sites un-
der our control.

4.3 Measuring click-through and conversion
To evaluate how often users who receive spam actually visit the

sites advertised requires monitoring the advertised sites themselves.
Since it is generally impractical to monitor sites not under our con-
trol, we have arranged to have a fraction of Storm’s spam advertise
sites of our creation instead.

In particular, we have focused on two types of Storm spam cam-
paigns, a self-propagation campaign designed to spread the Storm
malware (typically under the guise of advertising an electronic
postcard site) and the other advertising a pharmacy site. These are
the two most popular Storm spam campaigns and represent over
40% of recent Storm activity [15].

For each of these campaigns, the Storm master servers distribute
a specific “dictionary” that contains the set of target URLs to be in-
serted into spam e-mails as they are generated by worker bots. To
divert user visits to our sites instead, the rewriter replaces any dic-
tionaries that pass through our proxies with entries only containing
URLs to our Web servers.

In general, we strive for verisimilitude with the actual Storm op-
eration. Thus, we are careful to construct these URLs in the same
manner as the real Storm sites (whether this is raw IP addresses, as
used in the self-propagation campaigns, or the particular “noun-
noun.com” naming schema used by the pharmacy campaign) to
ensure the generated spam is qualitatively indistinguishable from
the “real thing”. An important exception, unique to the pharmacy
campaign, is an identifier we add to the end of each URL by modi-



(a) Pharmaceutical site

(b) Postcard-themed self-propagation site

Figure 3: Screenshots of the Web sites operated to measure
user click-through and conversion.

fying the associated spam template. This identifier allows us to un-
ambiguously associate individual spam messages with subsequent
accesses to the site. We did not add this identifier to the self-
propagation campaigns since their URLs typically consist entirely
of raw IP addresses. The addition of a text identifier suffix might
thus appear out of place, reducing verisimilitude, and perhaps bias
user click behavior.

Finally, we created two Web sites to mimic those used in the
associated campaigns (screenshots of these sites are shown in
Figure 3). The pharmaceutical site, primarily marketing “male-
enhancement” drugs such as Viagra, is a nearly-precise replica of
the site normally advertised by Storm down to using the same nam-
ing convention for the domains themselves. Our site mirrors the
original site’s user interface, the addition of products advertised for
sale to a “shopping cart”, and navigation up to, but not including,
the input of personal and payment information (there are a range
of complex regulatory, legal and ethical issues in accepting such
information). Instead, when a user clicks on “Checkout” we return
a 404 error message. We log all accesses to the site, allowing us
to determine when a visitor attempts to make a purchase and what
the content of their shopping cart is at the time. We assume that a
purchase attempt is a conversion, which we speculate is a reason-
able assumption, although our methodology does not allow us to
validate that the user would have actually completed the purchase
or that their credit card information would have been valid.

The self-propagation campaign is Storm’s key mechanism for
growth. The campaign entices users to download the Storm mal-
ware via deception; for example by telling them it is postcard soft-
ware essential for viewing a message or joke sent to them by a

friend. Unlike the pharmacy example, we were not able to mirror
the graphical content of the postcard site, since it was itself stolen
from a legitimate Internet postcard site. Instead, we created a close
analog designed to mimic the overall look and feel. We also “de-
fanged” our site by replacing its link to the Storm malware with that
of a benign executable. If run, our executable is designed to per-
forms a simple HTTP POST with a harmless payload (“data=1”)
to a server under our control, and then exit. As a rough timeout
mechanism, the executable will not send the message if the sys-
tem date is 2009 or later. Since the postcard site we impersonated
served three different executables under different names, we served
three executables with different target filenames in the POST com-
mand as well. Again, all accesses to the site are logged and we are
able to identify when our binary has been downloaded. Moreover,
by correlating with the POST signal, we are able to determine if a
particular download is ultimately executed on the visitor’s machine
(and hence is a conversion). Downloads and executions can differ
because the user has second thoughts about allowing an execution
or because the user’s security software prevents it from executing
(indeed, we observed that several anti-virus vendors developed sig-
natures for our benign executable within a few days of our intro-
ducing it).

4.4 Separating users from crawlers
As with our e-mail accounts, not all visits to our Web site are

prospective conversions. There is a range of automated and semi-
automated processes that visit our sites, ranging from pure Web
crawlers, to “honeyclient” systems designed to gather intelligence
on spam advertised sites, to security researchers trying to identify
new malware.

To filter out such visits (which we generically call “crawlers”)
from intentful ones, we have developed a series of heuristics to
identify crawlers and use this data to populate a global IP blacklist
across all of our Web sites. We outline these heuristics below.

First, we consider all hosts that access the pharmacy site that
do not use a URL containing the unique identifier discussed in
Section 4.3 to be crawlers. Second, we blacklist hosts that ac-
cess robots.txt (site-specific instructions meant only for Web
crawlers) and hosts that make malformed requests (most often ex-
ploit attempts). Third, we blacklist all hosts that disable javascript
and do not load embedded images. We assume that typical users
do not browse under these conditions, whereas some large-scale
anti-spam honeypots that follow embedded links in suspected spam
exhibit this behavior to reduce load.

In addition to blacklisting based on the behavior of individual
site visits, another common pattern we observed was the same IP
address accessing the pharmacy site using several different unique
identifiers, presumably as part of a spam defense or measurement
mechanism. Consequently, we blacklist an IP address seen access-
ing the pharmacy site with more than one unique identifier with
the same User-Agent field. This heuristic does not filter users
browsing behind larger Web proxy services, but does filter the ho-
mogeneous accesses seen from spam honeyclients. Similarly, we
also blacklist any host that requests the downloaded executable
from the postcard site ten or more times, under the assumption that
such hosts are used by researchers or other observers interested in
tracking updates to the Storm malware.

Finally, it has become common for anti-malware researchers to
find new versions of the Storm malware by directly accessing the
self-propagation dictionary entries. To detect such users we in-
jected new IP addresses (never advertised in spam messages) into
the self-propagation dictionary during a period of inactivity (i.e.,
when no self-propagation spam was being sent). Any visitors to
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Figure 4: Number of e-mail messages assigned per hour for
each campaign.

CAMPAIGN DATES WORKERS E-MAILS

Pharmacy Mar 21 – Apr 15 31,348 347,590,389
Postcard Mar 9 – Mar 15 17,639 83,665,479

April Fool Mar 31 – Apr 2 3,678 38,651,124
Total 469,906,992

Table 1: Campaigns used in the experiment.

these IP addresses could not have resulted from spam, and we there-
fore also added them to our crawler blacklist.

It is still possible that some of the accesses were via full-featured,
low-volume honeyclients, but even if these exist we believe they are
unlikely to significantly impact the data.

4.5 Measurement ethics
We have been careful to design experiments that we believe are

both consistent with current U.S. legal doctrine and are fundamen-
tally ethical as well. While it is beyond the scope of this paper to
fully describe the complex legal landscape in which active security
measurements operate, we believe the ethical basis for our work
is far easier to explain: we strictly reduce harm. First, our instru-
mented proxy bots do not create any new harm. That is, absent
our involvement, the same set of users would receive the same set
of spam e-mails sent by the same worker bots. Storm is a large
self-organizing system and when a proxy fails its worker bots au-
tomatically switch to other idle proxies (indeed, when our proxies
fail we see workers quickly switch away). Second, our proxies are
passive actors and do not themselves engage in any behavior that
is intrinsically objectionable; they do not send spam e-mail, they
do not compromise hosts, nor do they even contact worker bots
asynchronously. Indeed, their only function is to provide a conduit
between worker bots making requests and master servers providing
responses. Finally, where we do modify C&C messages in transit,
these actions themselves strictly reduce harm. Users who click on
spam altered by these changes will be directed to one of our innocu-
ous doppelganger Web sites. Unlike the sites normally advertised
by Storm, our sites do not infect users with malware and do not col-
lect user credit card information. Thus, no user should receive more
spam due to our involvement, but some users will receive spam that
is less dangerous that it would otherwise be.

5. EXPERIMENTAL RESULTS
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Figure 5: Timeline of proxy bot workload.

DOMAIN FREQ.

hotmail.com 8.47%
yahoo.com 5.05%
gmail.com 3.17%

aol.com 2.37%
yahoo.co.in 1.13%

sbcglobal.net 0.93%
mail.ru 0.86%

shaw.ca 0.61%
wanadoo.fr 0.61%

msn.com 0.58%
Total 23.79%

Table 2: The 10 most-targeted e-mail address domains and
their frequency in the combined lists of targeted addresses over
all three campaigns.

We now present the overall results of our rewriting experiment.
We first describe the spam workload observed by our C&C rewrit-
ing proxy. We then characterize the effects of filtering on the spam
workload along the delivery path from worker bots to user inboxes,
as well as the number of users who browse the advertised Web sites
and act on the content there.

5.1 Campaign datasets
Our study covers three spam campaigns summarized in Table 1.

The “Pharmacy” campaign is a 26-day sample (19 active days) of
an on-going Storm campaign advertising an on-line pharmacy. The
“Postcard” and “April Fool” campaigns are two distinct and serial
instances of self-propagation campaigns, which attempt to install
an executable on the user’s machine under the guise of being post-
card software. For each campaign, Figure 4 shows the number of
messages per hour assigned to bots for mailing.

Storm’s authors have shown great cunning in exploiting the cul-
tural and social expectations of users — hence the April Fool cam-
paign was rolled out for a limited run around April 1st. Our Web
site was designed to mimic the earlier Postcard campaign and thus
our data probably does not perfectly reflect user behavior for this
campaign, but the two are similar enough in nature that we surmise
that any impact is small.

We began the experiment with 8 proxy bots, of which 7 survived
until the end. One proxy crashed late on March 31. The total num-
ber of worker bots connected to our proxies was 75,869.

Figure 5 shows a timeline of the proxy bot workload. The num-
ber of workers connected to each proxy is roughly uniform across
all proxies (23 worker bots on average), but shows strong spikes
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Figure 6: The spam conversion pipeline.

STAGE PHARMACY POSTCARD APRIL FOOL

A – Spam Targets 347,590,389 100% 83,655,479 100% 40,135,487 100%
B – MTA Delivery (est.) 82,700,000 23.8% 21,100,000 25.2% 10,100,000 25.2%
C – Inbox Delivery — — — — — —
D – User Site Visits 10,522 0.00303% 3,827 0.00457% 2,721 0.00680%
E – User Conversions 28 0.0000081% 316 0.000378% 225 0.000561%

Table 3: Filtering at each stage of the spam conversion pipeline for the self-propagation and pharmacy campaigns. Percentages refer
to the conversion rate relative to Stage A.

corresponding to new self-propagation campaigns. At peak, 539
worker bots were connected to our proxies at the same time.

Most workers only connected to our proxies once: 78% of the
workers only connected to our proxies a single time, 92% at most
twice, and 99% at most five times. The most prolific worker IP
address, a host in an academic network in North Carolina, USA,
contacted our proxies 269 times; further inspection identified this
as a NAT egress point for 19 individual infections. Conversely,
most workers do not connect to more than one proxy: 81% of the
workers only connected to a single proxy, 12% to two, 3% to four,
4% connected to five or more, and 90 worker bots connected to all
of our proxies. On average, worker bots remained connected for
40 minutes, although over 40% workers connected for less than a
minute. The longest connection lasted almost 81 hours.

The workers were instructed to send postcard spam to a to-
tal of 83,665,479 addresses, of which 74,901,820 (89.53%) are
unique. The April Fool campaign targeted 38,651,124 addresses,
of which 36,909,792 (95.49%) are unique. Pharmacy spam tar-
geted 347,590,389 addresses, of which 213,761,147 (61.50%) are
unique. Table 2 shows the 15 most frequently targeted domains
of the three campaigns. The individual campaign distributions are
identical in ordering and to a precision of one tenth of a percentage,
therefore we only show the aggregate breakdown.

5.2 Spam conversion pipeline
Conceptually, we break down spam conversion into a pipeline

with five “filtering” stages in a manner similar to that described by
Aycock and Friess [6]. Figure 6 illustrates this pipeline and shows
the type of filtering at each stage. The pipeline starts with delivery
lists of target e-mail addresses sent to worker bots (Stage A). For
a wide range of reasons (e.g., the target address is invalid, MTAs
refuse delivery because of blacklists, etc.), workers will success-
fully deliver only a subset of their messages to an MTA (Stage B).
At this point, spam filters at the site correctly identify many mes-

SPAM FILTER PHARMACY POSTCARD APRIL FOOL
Gmail 0.00683% 0.00176% 0.00226%
Yahoo 0.00173% 0.000542% none

Hotmail none none none
Barracuda 0.131% N/A 0.00826%

Table 4: Number of messages delivered to a user’s inbox as
a fraction of those injected for test accounts at free e-mail
providers and a commercial spam filtering appliance. The test
account for the Barracuda appliance was not included in the
Postcard campaign.

sages as spam, and drop them or place them aside in a spam folder.
The remaining messages have survived the gauntlet and appear in
a user’s inbox as valid messages (Stage C). Users may delete or
otherwise ignore them, but some users will act on the spam, click
on the URL in the message, and visit the advertised site (Stage D).
These users may browse the site, but only a fraction “convert” on
the spam (Stage E) by attempting to purchase products (pharmacy)
or by downloading and running an executable (self-propagation).

We show the spam flow in two parts, “crawler” and “converter”,
to differentiate between real and masquerading users (Section 4.4).
For example, the delivery lists given to workers contain honeypot
e-mail addresses. Workers deliver spam to these honeypots, which
then use crawlers to access the sites referenced by the URL in the
messages (e.g., our own Spamscatter project [3]). Since we want
to measure the spam conversion rate for actual users, we separate
out the effects of automated processes like crawlers — a necessary
aspect of studying an artifact that is also being actively studied by
other groups [12].

Table 3 shows the effects of filtering at each stage of the con-
version pipeline for both the self-propagation and pharmaceutical
campaigns. The number of targeted addresses (A) is simply the to-
tal number of addresses on the delivery lists received by the worker



bots during the measurement period, excluding the test addresses
we injected.

We obtain the number of messages delivered to an MTA (B)
by relying on delivery reports generated by the workers. Unfor-
tunately, an exact count of successfully delivered messages is not
possible because workers frequently change proxies or go offline,
causing both extraneous (resulting from a previous, non-interposed
proxy session) and missing delivery reports. We can, however, es-
timate the aggregate delivery ratio (B/A) for each campaign using
the success ratio of all observed delivery reports. This ratio allows
us to then estimate the number of messages delivered to the MTA
and even to do so on a per-domain basis.

The number of messages delivered to a user’s inbox (C) is a
much harder value to estimate. We do not know what spam fil-
tering, if any, is used by each mail provider, and then by each user
individually, and therefore cannot reasonably estimate this number
in total. It is possible, however, to determine this number for in-
dividual mail providers or spam filters. The three mail providers
and the spam filtering appliance we used in this experiment had a
method for separating delivered mails into “junk” and inbox cat-
egories. Table 4 gives the number of messages delivered a user’s
inbox for the free e-mail providers, which together accounted for
about 16.5% of addresses targeted by Storm (Table 2), as well as
our department’s commercial spam filtering appliance. It is impor-
tant to note that these are results from one spam campaign over a
short period of time and should not be used as measures of the rel-
ative effectiveness for each service. That said, we observe that the
popular Web mail providers all do a very a good job at filtering the
campaigns we observed, although it is clear they use different meth-
ods to get there (for example, Hotmail rejects most Storm spam at
the MTA-level, while Gmail accepts a significant fraction only to
filter it later as junk).

The number of visits (D) is the number of accesses to our em-
ulated pharmacy and postcard sites, excluding any crawlers as de-
termined using the methods outlined in Section 4.2. We note that
crawler requests came from a small fraction of hosts but accounted
for the majority of all requests to our Web sites. For the pharmacy
site, for instance, of the 11,720 unique IP addresses seen accessing
the site with a valid unique identifier, only 10.2% were blacklisted
as crawlers. In contrast, 55.3% of all unique identifiers used in re-
quests originated from these crawlers. For all non-image requests
made to the site, 87.43% were made by blacklisted IP addresses.

The number of conversions (E) is the number of visits to the
purchase page of the pharmacy site, or the number of executions of
the fake self-propagation program.

Our results for Storm spam campaigns show that the spam con-
version rate is quite low. For example, out of 350 million pharmacy
campaign e-mails only 28 conversions resulted (and no crawler ever
completed a purchase so errors in crawler filtering plays no role).
However, a very low conversion rate does not necessary imply low
revenue or profitability. We discuss the implications of the conver-
sion rate on the spam conversion proposition further in Section 8.

5.3 Time to click
The conversion pipeline shows what fraction of spam ultimately

resulted visits to the advertised sites. However, it does not re-
flect the latency between when the spam was sent and when a user
clicked on it. The longer it takes users to act, the longer the scam
hosting infrastructure will need to remain available to extract rev-
enue from the spam [3]. Put another way, how long does a spam-
advertised site need to be available to collect its potential revenue?

Figure 7 shows the cumulative distribution of the “time-to-click”
for accesses to the pharmacy site. The time-to-click is the time
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Figure 7: Time-to-click distributions for accesses to the phar-
macy site.

from when spam is sent (when a proxy forwards a spam workload
to a worker bot) to when a user “clicks” on the URL in the spam
(when a host first accesses the Web site). The graph shows three
distributions for the accesses by all users, the users who visited the
purchase page (“converters”), and the automated crawlers (14,716
such accesses). Note that we focus on the pharmacy site since,
absent a unique identifier, we do not have a mechanism to link visits
to the self-propagation site to specific spam messages and their time
of delivery.

The user and crawler distributions show distinctly different be-
havior. Almost 30% of the crawler accesses are within 20 sec-
onds of worker bots sending spam. This behavior suggests that
these crawlers are configured to scan sites advertised in spam im-
mediately upon delivery. Another 10% of crawler accesses have
a time-to-click of 1 day, suggesting crawlers configured to access
spam-advertised sites periodically in batches. In contrast, only 10%
of the user population accesses spam URLs immediately, and the
remaining distribution is smooth without any distinct modes. The
distributions for all users and users who “convert” are roughly simi-
lar, suggesting little correlation between time-to-click and whether
a user visiting a site will convert. While most user visits occur
within the first 24 hours, 10% of times-to-click are a week to a
month, indicating that advertised sites need to be available for long
durations to capture full revenue potential.

6. EFFECTS OF BLACKLISTING
A major effect on the efficacy of spam delivery is the employ-

ment by numerous ISPs of address-based blacklisting to reject e-
mail from hosts previously reported as sourcing spam. To assess
the impact of blacklisting, during the course of our experiments
we monitored the Composite Blocking List (CBL) [1], a blacklist
source used by the operators of some of our institutions. At any
given time the CBL lists on the order of 4–6 million IP addresses
that have sent e-mail to various spamtraps. We were able to monitor
the CBL from March 21 – April 2, 2008, from the start of the Phar-
macy campaign until the end of the April Fool campaign. Although
the monitoring does not cover the full extent of all campaigns, we
believe our results to be representative of the effects of CBL during
the time frame of our experiments.

We downloaded the current CBL blacklist every half hour, en-
abling us to determine which worker bots in our measurements



Figure 9: Geographic locations of the hosts that “convert” on spam: the 541 hosts that execute the emulated self-propagation
program (light grey), and the 28 hosts that visit the purchase page of the emulated pharmacy site (black).
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Figure 8: Change in per-domain delivery rates as seen prior
to a worker bot appearing in the blacklist (x-axis) vs. after ap-
pearing (y-axis). Each circle represents a domain targeted by
at least 1,000 analyzable deliveries, with the radius scaled in
proportion to the number of delivery attempts.

were present on the list and how their arrival on the list related
to their botnet activity. Of 40,864 workers that sent delivery re-
ports, fully 81% appeared on the CBL. Of those appearing at some
point on the list, 77% were on the list prior to our observing their
receipt of spamming directives, appearing first on the list 4.4 days
(median) earlier. Of those not initially listed but then listed sub-
sequently, the median interval until listing was 1.5 hours, strongly
suggesting that the spamming activity we observed them being in-
structed to conduct quickly led to their detection and blacklisting.
Of hosts never appearing on the list, more than 75% never reported
successful delivery of spam, indicating that the reason for their lack

of listing was simply their inability to effectively annoy anyone.
One confounding factor is that the CBL exhibits considerable

flux once an address first appears on the blacklist: the worker
bots typically (median) experience 5 cycles of listing-followed-by-
delisting. Much of this churn comes from a few periods of massive
delistings, which appear to be glitches in maintenance (or propa-
gation) of the blacklist rather than a response to external events.
(If delistings arose due to botmasters using the delisting process to
render their workers more effective for a while, then it might be
possible to monitor the delisting process in order to conduct botnet
counterintelligence, similar to that developed previously for black-
listing lookups [18].) Due to caching of blacklist entries by sites,
we thus face ambiguity regarding whether a given worker is viewed
as blacklisted at a given time. For our preliminary analysis, we sim-
ply consider a worker as blacklisted from the point where it first
appears on the CBL onwards.

We would expect that the impact of blacklisting on spam delivery
strongly depends on the domain targeted in a given e-mail, since
some domains incorporate blacklist feeds such as the CBL into
their mailer operations and others do not. To explore this effect,
Figure 8 plots the per-domain delivery rate: the number of spam e-
mails that workers reported as successfully delivered to the domain
divided by number attempted to that domain. The x-axis shows the
delivery rate for spams sent by a worker prior to its appearance in
the CBL, and the y-axis shows the rate after its appearance in the
CBL. We limit the plot to the 10,879 domains to which workers at-
tempted to deliver at least 1,000 spams. We plot delivery rates for
the two different campaigns as separate circles, though the over-
all nature of the plot does not change between them. The radius of
each plotted circle scales in proportion to the number of delivery at-
tempts, the largest corresponding to domains such as hotmail.com,
yahoo.com, and gmail.com.

From the plot we clearly see a range of blacklisting behavior by
different domains. Some employ other effective anti-spam filtering,
indicated by their appearance near the origin — spam did not get
through even prior to appearing on the CBL blacklist. Some make
heavy use of either the CBL or a similar list (y-axis near zero, but
x-axis greater than zero), while others appear insensitive to black-
listing (those lying on the diagonal). Since points lie predominantly
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Figure 10: Volume of e-mail targeting (x-axis) vs. responses (y-
axis) for the most prominent country-code TLDs. The x and y
axes correspond to Stages A and D in the pipeline (Figure 6),
respectively.

below the diagonal, we see that either blacklisting or some other
effect related to sustained spamming activity (e.g., learning con-
tent signatures) diminishes the delivery rate seen at most domains.
Delisting followed by relisting may account for some of the spread
of points seen here; those few points above the diagonal may sim-
ply be due to statistical fluctuations. Finally, the cloud of points
to the upper right indicates a large number of domains that are not
much targeted individually, but collectively comprise a significant
population that appears to employ no effective anti-spam measures.

7. CONVERSION ANALYSIS
We now turn to a preliminary look at possible factors influenc-

ing response to spam. For the present, we confine our analysis to
coarse-grained effects.

We start by mapping the geographic distribution of the hosts
that “convert” on the spam campaigns we monitored. Figure 9
maps the locations of the 541 hosts that execute the emulated self-
propagation program, and the 28 hosts that visit the purchase page
of the emulated pharmacy site. The map shows that users around
the world respond to spam.

Figure 10 looks at differences in response rates among nations
as determined by prevalent country-code e-mail domain TLDs. To
allow the inclusion of generic TLDs such as .com, for each e-mail
address we consider it a member of the country hosting its mail
server; we remove domains that resolve to multiple countries, cat-
egorizing them as “international” domains. The x-axis shows the
volume of e-mail (log-scaled) targeting a given country, while the
y-axis gives the number of responses recorded at our Web servers
(also log-scaled), corresponding to Stages A and D in the pipeline
(Figure 6), respectively. The solid line reflects a response rate of
10−4 and the dashed line a rate of 10−3. Not surprisingly, we
see that the spam campaigns target e-mail addresses in the United
States substantially more than any other country. Further, India,
France and the United States dominate responses. In terms of re-
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Figure 11: Response rates (stage D in the pipeline) by TLD for
executable download (x-axis) vs. pharmacy visits (y-axis).

sponse rates, however, India, Pakistan, and Bulgaria have the high-
est response rates than any other countries (furthest away from the
diagonal). The United States, although a dominant target and re-
sponder, has the lowest resulting response rate of any country, fol-
lowed by Japan and Taiwan.

However, the countries with predominant response rates do not
appear to reflect a heightened interest in users from those countries
in the specific spam offerings. Figure 11 plots the rates for the
most prominent countries responding to self-propagation vs. phar-
macy spams. The median ratio between these two rates is 0.38
(diagonal line). We see that India and Pakistan in fact exhibit al-
most exactly this ratio (upper-right corner), and Bulgaria is not far
from it. Indeed, only a few TLDs exhibit significantly different
ratios, including the US and France, the two countries other than
India with a high number of responders; users in the US respond
to the self-propagation spam substantially more than pharmaceuti-
cal spam, and vice-versa with users in France. These results sug-
gest that, for the most part, per-country differences in response rate
are due to structural causes (quality of spam filtering, general user
anti-spam education) rather than differing degrees of cultural or na-
tional interest in the particular promises or products conveyed by
the spam.

8. CONCLUSIONS
This paper describes what we believe is the first large-scale quan-

titative study of spam conversion. We developed a methodology
that uses botnet infiltration to indirectly instrument spam e-mails
such that user clicks on these messages are taken to replica Web
sites under our control. Using this methodology we instrumented
almost 500 million spam messages, comprising three major cam-
paigns, and quantitatively characterized both the delivery process
and the conversion rate.

We would be the first to admit that these results represent a sin-
gle data point and are not necessarily representative of spam as a
whole. Different campaigns, using different tactics and marketing
different products will undoubtedly produce different outcomes.



Indeed, we caution strongly against researchers using the conver-
sion rates we have measured for these Storm-based campaigns to
justify assumptions in any other context. At the same time, it
is tempting to speculate on what the numbers we have measured
might mean. We succumb to this temptation below, with the under-
standing that few of our speculations can be empirically validated
at this time.

After 26 days, and almost 350 million e-mail messages, only 28
sales resulted — a conversion rate of well under 0.00001%. Of
these, all but one were for male-enhancement products and the av-
erage purchase price was close to $100. Taken together, these con-
versions would have resulted in revenues of $2,731.88 — a bit over
$100 a day for the measurement period or $140 per day for peri-
ods when the campaign was active. However, our study interposed
on only a small fraction of the overall Storm network — we esti-
mate roughly 1.5 percent based on the fraction of worker bots we
proxy. Thus, the total daily revenue attributable to Storm’s phar-
macy campaign is likely closer to $7000 (or $9500 during periods
of campaign activity). By the same logic, we estimate that Storm
self-propagation campaigns can produce between 3500 and 8500
new bots per day.

Under the assumption that our measurements are representative
over time (an admittedly dangerous assumption when dealing with
such small samples), we can extrapolate that, were it sent con-
tinuously at the same rate, Storm-generated pharmaceutical spam
would produce roughly 3.5 million dollars of revenue in a year.
This number could be even higher if spam-advertised pharmacies
experience repeat business. A bit less than “millions of dollars ev-
ery day”, but certainly a healthy enterprise.

The next obvious question is, “How much of this revenue is
profit”? Here things are even murkier. First, we must consider how
much of the gross revenue is actually recovered on a sale. Assum-
ing the pharmacy campaign drives traffic to an affiliate program
(and there are very strong anecdotal reasons to believe this is so)
then the gross revenue is likely split between the affiliate and the
program (a annual net revenue of $1.75M using our previous es-
timate). Next, we must subtract business costs. These include a
number of incidental expenses (domain registration, bullet-proof
hosting fees, etc) that are basically fixed sunk costs, and the cost to
distribute the spam itself.

Anecdotal reports place the retail price of spam delivery at a bit
under $80 per million [22]. This cost is an order of magnitude
less than what legitimate commercial mailers charge, but is still a
significant overhead; sending 350M e-mails would cost more than
$25,000. Indeed, given the net revenues we estimate, retail spam
delivery would only make sense if it were 20 times cheaper still.

And yet, Storm continues to distribute pharmacy spam — sug-
gesting that it is in fact profitable. One explanation is that Storm’s
masters are vertically integrated and the purveyors of Storm’s phar-
macy spam are none other than the operators of Storm itself (i.e.,
that Storm does not deliver these spams for a third-part in exchange
for a fee). There is some evidence for this, since the distribution of
target e-mail domain names between the self-propagation and phar-
macy campaigns is virtually identical. Since the self-propagation
campaigns fundamentally must be run by the botnet’s owners, this
suggests the purveyor of the pharmacy spam is one and the same.
A similar observation can be made in the harvesting of e-mail ad-
dresses from the local hard drives of Storm hosts. These e-mail
addresses subsequently appear in the target address lists of the phar-
macy campaign and self-propagation campaigns alike. Moreover,
neither of these behaviors is found in any of the other (smaller)
campaigns distributed by Storm (suggesting that these may in fact
be fee-for-service distribution arrangements). If true, then the cost

of distribution is largely that of the labor used in the development
and maintenance of the botnet software itself. While we are unable
to provide any meaningful estimates of this cost (since we do not
know which labor market Storm is developed in), we surmise that
it is roughly the cost of two or three good programmers.

If true, this hypothesis is heartening since it suggests that the
third-party retail market for spam distribution has not grown large
or efficient enough to produce competitive pricing and thus, that
profitable spam campaigns require organizations that can assemble
complete “soup-to-nuts” teams. Put another way, the profit margin
for spam (at least for this one pharmacy campaign) may be mea-
ger enough that spammers must be sensitive to the details of how
their campaigns are run and are economically susceptible to new
defenses.
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