
Manufacturing Compromise: The Emergence of
Exploit-as-a-Service

Chris Grier†� Lucas Ballard2 Juan Caballero§ Neha Chachra∗ Christian J. Dietrichq

Kirill Levchenko∗ Panayiotis Mavrommatis2 Damon McCoy‡ Antonio Nappa§

Andreas Pitsillidis∗ Niels Provos2 M. Zubair Rafique§ Moheeb Abu Rajab2

Christian Rossowq Kurt Thomas† Vern Paxson†� Stefan Savage∗ Geoffrey M. Voelker∗

†University of California, Berkeley ∗University of California, San Diego 2 Google

� International Computer Science Institute § IMDEA Software Institute

qUniversity of Applied Sciences Gelsenkirchen ‡George Mason University

ABSTRACT
We investigate the emergence of the exploit-as-a-service model for
driveby browser compromise. In this regime, attackers pay for an
exploit kit or service to do the “dirty work” of exploiting a vic-
tim’s browser, decoupling the complexities of browser and plugin
vulnerabilities from the challenges of generating traffic to a web-
site under the attacker’s control. Upon a successful exploit, these
kits load and execute a binary provided by the attacker, effectively
transferring control of a victim’s machine to the attacker.

In order to understand the impact of the exploit-as-a-service
paradigm on the malware ecosystem, we perform a detailed anal-
ysis of the prevalence of exploit kits, the families of malware in-
stalled upon a successful exploit, and the volume of traffic that ma-
licious web sites receive. To carry out this study, we analyze 77,000
malicious URLs received from Google Safe Browsing, along with
a crowd-sourced feed of blacklisted URLs known to direct to ex-
ploit kits. These URLs led to over 10,000 distinct binaries, which
we ran in a contained environment.

Our results show that many of the most prominent families of
malware now propagate through driveby downloads—32 families
in all. Their activities are supported by a handful of exploit kits,
with Blackhole accounting for 29% of all malicious URLs in our
data, followed in popularity by Incognito. We use DNS traffic from
real networks to provide a unique perspective on the popularity of
malware families based on the frequency that their binaries are in-
stalled by drivebys, as well as the lifetime and popularity of do-
mains funneling users to exploits.

Categories and Subject Descriptors
K.4.1 [Public Policy Issues]: ABUSE AND CRIME INVOLVING
COMPUTERS
Keywords
Security, Malware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$15.00.

1. INTRODUCTION
In this work we investigate the emergence of a new paradigm: the

exploit-as-a-service economy that surrounds browser compromise.
This model follows in the footsteps of a dramatic evolution in the
world of for-profit malware over the last five years, where host com-
promise is now decoupled from host monetization. Specifically, the
means by which a host initially falls under an attacker’s control are
now independent of the means by which an(other) attacker abuses
the host in order to realize a profit. This shift in behavior is exem-
plified by the pay-per-install model of malware distribution, where
miscreants pay for compromised hosts via the underground econ-
omy [4, 41]. Where the pay-per-install market relies on a mixture
of social engineering, spam, and other infection vectors to com-
promise hosts, the exploit-as-a-service model specifically relies on
driveby downloads.

Our prior work suggests that driveby downloads that target
browser and plugin vulnerabilities (e.g., PDF viewers, Flash, and
Java) to install malware now represent the largest threat to end
users [30]. The vanguard of this assault is lead by the development
of exploit kits: packages of browser exploits that simplify the act
of compromising victims that visit malicious websites. While web
exploit kits themselves are not new, dating back to at least MPack
in 2006 [34], there is little doubt that exploit kits have come of
age. The recent compromise of mysql.com—a site in the Alexa
1000—was used to infect visitors using the Blackhole exploit ser-
vice [14], which we have found anecdotally (via Blackhole man-
agement screenshots) to achieve a successful compromise rate of
9–14% [17, 43, 46]

In order to understand the impact of the exploit-as-a-service mar-
ketplace on the malware ecosystem, we perform a detailed analysis
of the prevalence of exploit kits, the families of malware installed
upon a successful exploit, and the volume of traffic malicious web-
sites receive. To carry out this study, we aggregate and analyze
77,000 malicious URLs received from Google Safe Browsing, and
from a crowd-sourced feed of blacklisted URLs known to direct
to exploit kits. For each of these URLs, we also obtain at regular
intervals a copy of the malicious binaries they attempt to install, to-
taling over 10,000 variants from the course of March 1, 2012 until
April 20, 2012.

We run each of these binaries in a contained execution environ-
ment and determine a sample’s family as well as its monetization
approach, such as spam, fake anti-virus, and a multitude of other
strategies for profiting off of an infection. To offer a comparison to

821

other competing malware distribution techniques, we develop and
acquire malware feeds that include malicious email attachments,
torrents for pirated software, malicious binaries installed by drop-
pers tied to the pay-per-install marketplace, and binaries extracted
from live network traffic. We find that drivebys and droppers are the
primary source of the most prominent malware families, indicating
a continuing shift in the malware ecosystem towards miscreants
that specialize solely in compromising hosts.

In addition to the malware installed by browser exploits, we ex-
amine the exploit kits that are behind the scene. We determine that
Blackhole accounts for 29% of all malicious URLs, followed in
popularity by Incognito and a small handful of other exploit kits.
Combined, these kits are used to distribute at least 32 different fam-
ilies of malware. Furthermore, we map out the complex infection
chain tied to driveby exploits, including the use of compromised
pages and the redirection of victims to multiple exploit kits simul-
taneously.

Finally, using 3.5TB of passive DNS data collected from several
large ISPs and enterprises, we provide a unique perspective on the
ranking of malware families based on the frequency that drivebys
install their binaries as well as the lifetime of exploit domains. We
find that droppers, information stealers, and fake anti-virus soft-
ware dominate the monetization of drivebys. Despite finding that
exploit domains survive for a median of only 2.5 hours, we show
that thousands of visitors suffer exposure to drivebys due to the
compromise of popular webpages. Lastly, we examine the impact
of Google Safe Browsing on driveby domains. While our analysis
clearly highlights that websites hosting driveby exploits encounter
immense pressure, this does not suffice to disrupt operations com-
pletely.

In summary, we frame our contributions as follows:

v For each driveby site, we identify the most popular
exploit kit used and the malware family served by
the site, including its monetization scheme.

v Using passive DNS data we estimate the rela-
tive popularity of malware families distributed via
driveby exploits.

v We report on operational aspects of driveby com-
promises; specifically, the lifetime of domains
used to distribute malware (hours on average), and
the effectiveness of interventions like Google Safe
Browsing.

We organize the rest of this paper as follows. Section 2 provides
a background on exploit services and host compromise. Section 3
describes our measurement and malware classification methodol-
ogy. In Section 4 we present our results. We frame related work in
Section 5 and summarize the paper in Section 6.

2. BACKGROUND
From the time a victim accesses a malicious website up to the

installation of malware on their system, there is a complex chain of
events that underpins a successful driveby download. We present a
sample infection chain for a real driveby exploit in Figure 1, ob-
fuscating only the compromised website that launched the attack.
The process begins with a victim visiting a compromised website
or otherwise malicious page (¶). The victim’s browser receives a
series of redirections through a chain of intermediate pages (·) that
obscures the final landing page, which hosts an exploit kit (¸). This
final page attempts to exploit a victim’s browser, targeting either
vulnerabilities in the browser, or browser plugins such as Adobe
Flash and Java. If an unpatched version of the vulnerable software

exists, the victim’s machine is compromised and any variety of mal-
ware can be installed (¹,º).

The challenge of identifying new browser exploits, funneling
traffic to malicious webpages, and monetizing compromised hosts
has led to a diversification of roles within the malware ecosystem,
and in particular, the emergence of a new marketplace surround-
ing exploit-as-a-service. This marketplace currently includes two
business models: exploit kits and Traffic-PPI services.

In the exploit kit model, miscreants either purchase exploit kits
(software only) or rent access to pre-configured exploit servers
(hardware and exploit software). This business model fulfills all the
requirements of step ¸ and º in the driveby chain. Clients are re-
sponsible for luring their own victims and determining which mal-
ware to distribute.

Traffic-PPI service take the exploit pack model one step further
and can be considered an evolution of the pay-per-install service
model [4]. In this model, clients simply purchase installs and pro-
vide their binaries (¹), while the Traffic-PPI service takes care of
the entire process of generating traffic, redirecting, and exploiting
a victim’s browsers (¶, ·, ¸) until finally installing the client’s
software (º).

2.1 Exploit Kits and Servers
For our purposes we will use the term exploit kits (or packs) to

refer to software packages that bundle multiple exploits targeted at
vulnerabilities in web browsers and their plugins (e.g., Flash, PDF
and Java). Popular exploit kits include Blackhole, Eleonore, and
Phoenix [9]. Attackers install exploit kits on web servers, and we
term the combination of server plus exploit kit as an exploit server.
Upon a visit to a domain hosted in an exploit server, the exploit
kit automatically profiles the browser and delivers an exploit based
on the operating system, browser, and plugin configuration. If the
exploit succeeds, it downloads a binary that then executes on the
user’s computer.

Exploit kits date back at least to MPack from 2006 [34]. The tra-
ditional business model for commercializing exploit kits has been
one-time fees [27]. Like traditional software, once purchased, such
licenses generally allow unlimited use, although some kits attempt
to enforce limits based on time or domains and IP addresses used
by the exploit server. For example, the Phoenix exploit kit charges
a flat fee for a single domain license. This license cost $400 in
November 2009 and current versions start at $2,200 [23].

Recently, the Blackhole exploit kit introduced the exploit server
model, which can be viewed as an application of the software-as-a-
service paradigm for browser compromise. With an exploit server,
an exploit kit author provides clients with access to a pre-imaged
host running their exploit software, which clients can configure to
drop various malware variants; all other aspects of hosting, includ-
ing domain registration and periodic exploit updates, are handled
by the exploit author. Renting a Blackhole server ranges from $50
for an hour up to $500 for a month (a surprisingly narrow range in
price for which we do not have an explanation), which includes full
support for the duration of the rental [13].

2.2 Traffic-PPI Services
Traffic-PPI services are a natural evolution of the classic pay-per-

install (PPI) service [4] adapted to the drive-by-download ecosys-
tem. The key difference between the models is that in the classic
PPI model, the PPI service outsources the task of exploiting the
target hosts to affiliates. Affiliates rely on their own distribution
methods, which include torrents, drivebys, spam, or, surprisingly,
simply using other PPI services. In contrast, the service that runs
a Traffic-PPI marketplace is in charge of exploitation exclusively

822

Figure 1: The drive-by-download infection chain. Within the exploit-as-a-service ecosystem, two roles have appeared: exploit kits that aid
miscreants in compromising browsers (¸), and Traffic-PPI markets that sell installs to clients (¹) while managing all aspects of a successful
exploit (¶,·,¸).

through drivebys. Often, these Traffic-PPI services rely on affili-
ates to provide traffic. Similar to web advertising, these services
charge clients a cost-per-impression (CPI) for installing a client’s
program and pay affiliates for traffic that leads to a successful infec-
tion. Traffic-PPI services can absolve themselves of further work by
outsourcing the creation of browser exploits to an exploit pack au-
thor, where the Traffic-PPI simply becomes a middle man between
traffic generators, exploit kit writers, and clients. We present two
examples of Traffic-PPI services to illustrate their business models.
SellMeYourTraffic: The Traffic-PPI program SellMeYourTraffic
states that they buy any type of traffic from affiliates, regard-
less of quality, paying affiliates between $0.80–$3.00 USD per
thousand visits [37]. In their own words: “Send it all... Pop-ups,
pop-unders, blind clicks, re-directs, arbitrage, remnant traffic, and
whatever else you have [. . .]” Similar to other Traffic-PPI affili-
ate programs, they do not specify how they will use the traffic,
but behind the scenes they redirect incoming traffic to instances
of the Blackhole exploit kit [38]. For instance, when a user vis-
its feekiller.com, a website belonging to a SellMeYourTraffic
affiliate, the user ends up being redirected to the SellMeYourTraf-
fic service at click.icetraffic.com and eventually to a Black-
hole exploit server. This exchange was captured by URLQuery.net,
a service that visits websites and provides detailed logs for each
visit [38].
Traffbiz: Traffbiz is a Russian Traffic-PPI service. They also run
an affiliate service and pay affiliate webmasters $1.6 USD per thou-
sand visits from users in Russia [45]. To perform the hand-off of
traffic, the affiliate receives a small snippet of JavaScript code to
add to their websites. The JavaScript snippet contains a link to a
banner picture, which in turn includes a five digit unique affiliate
identifier. In reality, the banner is the start of a redirect sequence
that eventually leads the user’s browser to an exploit server run-
ning the Blackhole exploit kit. Users outside of Russia are simply
presented with a normal banner.

2.3 Monetization Approaches
Profit lies at the heart of the modern malware ecosystem. Once

a machine has been successfully infected, miscreants have a num-
ber of monetization vectors at their disposal, many of which in fact
reflect services that further fuel the underground economy. We pro-
vide a brief overview of these techniques, paying particular atten-
tion to the most notorious families of malware.
Spamming: Spam pertains to any form of bulk unsolicited messag-
ing, including messages sent via email and social networks. Exam-
ples of well-understood email spam botnets include Rustock [16],

Storm [19], and MegaD [6], while a number of unidentified pro-
grams target Facebook and Twitter [11,44]. Monetization comes in
many forms, including the sale of pharmaceuticals, replica goods,
and fake software [21]. While a diversity of roles exists within the
spam marketplace, in the context of monetization approaches when
we refer to spam we specifically mean the bulk distribution of mes-
sages.
Information Theft: Information stealers such as Torpig [40], Zeus,
and SpyEye harvest sensitive user data from compromised ma-
chines, including documents, passwords, and banking credentials.
These in turn can be cashed out or sold to the underground econ-
omy of carders [10]. The existence of crimeware toolkits [18] read-
ily available for purchase has led to a proliferation of customized
botnets, in contrast to the monolithic botnets associated with spam.
Clickfraud: Clickfraud generates revenue by using automated bots
to simulate legitimate traffic to pay-per-click advertisements [25,
42]. These ads typically appear on pages controlled by miscreants,
while the ads are syndicated from advertising networks such as
Google AdSense.
Browser Hijacking: Browser hijacking includes any malware that
overwrites the default browser search engine or re-routes web traf-
fic on a machine in order to garner traffic to a particular website.
Third parties can purchase this traffic either seeking to bootstrap in-
fections (e.g., by directing traffic to driveby downloads) or for other
revenue streams, such as advertising or product scams. We exclude
malware that hijacks browsing sessions to steal credentials or dis-
play phishing pages from this category, as the goal of such variants
is to siphon data for information theft, not to generate traffic.
Fake Software: Fake software includes any malware that prompts
a user to install or upgrade ineffectual software. The most promi-
nent approach here is selling rogue antivirus [31, 39]. These pro-
grams prompt users to pay a one-time fee in order to remove non-
existent malware infections, providing no protection in return.
Proxies & Hosting: For externally facing hosts, miscreants can
convert compromised machines into bulletproof hosting services
and proxy networks that are re-sold as tools for other miscre-
ants [12]. These machines can in turn host vital C&C infrastruc-
ture, act as anonymizers, or simply provide a diverse pool of IP
addresses to circumvent IP-based restrictions for sending spam or
registering accounts.
Droppers: Rather than employing one of the aforementioned tech-
niques, miscreants can sell successful infections to other parties on
the underground market [4]. In some cases, this involves miscreants
installing a dropper on a compromised host. This tool automatically

823

Feed Vector Start End Num. Run

Google Driveby 4/2012 5/2012 4,967
BH/Phoenix Driveby 3/2012 5/2012 5,341
Sandnet Dropper 9/2011 5/2012 2,619
Spam Traps Attachment 2/2012 5/2012 2,817
Torrents Warez 9/2011 5/2012 17,182
Arbor ASERT Live Traffic 8/2011 5/2012 28,300

Table 1: Malware feeds used in the study.

contacts a pay-per-install provider for new binaries to install in ex-
change for a fee. We differentiate between staged installers where
an initial infection is used to bootstrap updates or new features, and
droppers, where control of a machine is re-sold to a second or even
multiple parties.

3. METHODOLOGY
Our study of driveby downloads centers around the malware

installed upon a successful browser exploit. Figure 2 shows our
pipeline for executing malware to determine its family and moneti-
zation. We receive malicious binaries from a variety of feeds. While
in this paper we focus on malware distributed through driveby
downloads, we also analyze competing infection vectors to explore
the prominence of driveby downloads.

We execute a sample of these binaries in a contained environ-
ment, tracking each sample’s behavior. We then automatically clus-
ter the behavioral reports of variants and provide them to analysts
for manual classification.

3.1 Malware Feeds
Our malware collection infrastructure consists of six distinct

feeds. Five of them capture traffic from specific infection vectors.
These feeds include malicious executables installed after a success-
ful driveby download exploit (two distinct sources); executables
obtained by infiltrating the pay-per-install marketplace; malicious
email attachments; and infected executables embedded in cracked
or pirated software downloaded from torrents. The final feed con-
stitutes a collection of binaries found in the wild by honeypots and
network traffic monitors, as explained below.

Obtaining a representative sample of malware presents an ardu-
ous, if not insurmountable, task [5]. Instead, we aim to capture bi-
naries that span the breadth of popular infection vectors, allowing
us to characterize differences in monetization approaches across
each vector. Table 1 summarizes of our six feeds and the volume of
binaries we acquire from each. We now discuss each in turn.
Driveby Downloads: Our first feed of driveby downloads consists
of executables and their corresponding URLs found by Google’s
Safe Browsing infrastructure [29]. Google uses a web browser to
visit suspicious web sites, flagging URLs that attack the browser
and result in malicious side effects. We receive a copy of the mal-
ware that the attack installs, along with the URL responsible for the
exploit and URL for the downloaded malware. In total, we received
4,967 binaries this way, all of which we presume as malicious due
to the nature of their installation.

Our second driveby download feed focuses on payloads deliv-
ered by instances of the Blackhole and Phoenix exploit packs. We
rely on crowd-sourced identification of driveby URLs [24], which
we then visit at regular intervals to download the binary that it cur-
rently serves to infection victims. Using this approach, we acquired
5,341 additional driveby-related binaries.
Droppers: We receive a feed of binaries from Sandnet [36], which
automatically contacts dropper services [35] and requests the latest

binaries that third-party miscreants paid to have installed. In total,
we received 2,619 binaries, which we use as a sample of the activity
occurring in the pay-per-install market.
Email Attachments: Email attachments have a long history as a
vector of malicious software. We receive a feed of emails, sent to
spam traps hosted on a variety of domains, from which we extracted
2,817 attachments corresponding to either archive files (ZIP, RAR)
that contain a Windows executable or plain Windows executables.
Torrents: Torrents used to distribute pirated software, cracks, and
patches represent another common method for infecting end users.
To analyze this vector, we scan ThePirateBay, isohunt, h33t, and a
number of other trackers every four hours, downloading any new
software torrents. (When we download content, we prohibit up-
loading to avoid enabling further infringement.) In total, we down-
loaded 17,182 torrents that constitute either archive files or Win-
dows executables. As not all of these are necessarily malicious, we
rely on clustering and manual classification, as discussed below, to
identify harmful samples.
Live Network Traffic: Our final feed consists of 28,300 executa-
bles identified by the Arbor Security Engineering and Response
Team and provided via their ATLAS system.1 The feed does not
target any one specific infection vector, but rather encompasses ex-
ecutables found throughout the wild, including URLs, honeypots,
and in network traffic. Executables in the feed are not guaranteed
to be malicious, again requiring a manual effort to filter out benign
samples. We compare against this feed to determine attacks broadly
seen in the wild versus those found specifically in drivebys.
Feed Overlap: A comparison of the MD5s of samples in each feed
reveals that 0.4% of the binaries appear in more than one of the
feeds. The most frequently occurring overlap (0.3%) are samples in
the Sandnet and the Arbor ASERT feeds. Comparing feeds by MD5
sum is problematic, as frequent (and even on-demand) repacking of
malware causes numerous distinct samples of the same malware to
occur in the wild [4]. In Section 4 we provide another comparison
of feeds based on the classification of the samples.

3.2 Contained Execution
We execute each binary in a virtualized environment provided by

the GQ honeyfarm [20], which supports monitoring malware exe-
cution while providing a flexible network policy. We use Windows
XP Service Pack 3 for all executions, and the system can process
thousands of binaries per day.

In our experiments the execution environment prevents all traffic
from directly contacting outside hosts, and instead redirects traf-
fic to internal services. To provide realistic services that mimic the
destinations that malware samples contact, we have built several in-
ternal services that respond to DNS, HTTP, and SMTP requests on
demand. Our HTTP server operates as a transparent HTTP proxy
for hosts on a whitelist, and replies with HTTP 200 OK messages
and empty bodies for all non-whitelisted destinations. We hand-
craft the whitelist to include websites commonly used by malware
as connection tests, where failed connections would otherwise re-
sult in the malware terminating prematurely.

For DNS, our service answers all queries, even requests with-
out a valid answer, to ensure that domain takedowns have limited
impact on malware execution. Finally, for SMTP traffic our server
contacts the original destination and relays the server banners to the
malware, but does not relay SMTP commands to the real server. For
all other protocol types we provide a sink that will accept packets
but does not respond.

1http://atlas.arbor.net

824

Figure 2: Architecture of our malware execution environment. We receive a feed of malware executables from a variety of sources (¶),
which we execute in a contained, controlled environment that captures network traffic, system modifications, and screenshots before termi-
nating (·). We cluster the behavioral reports using a variety of techniques (¸) before finally supplying the clusters to analysts for manual
classification (¹).

Feed DNS HTTP System Windows

Driveby 40.1% 44.7% 60.0% 45.1%
Dropper 28.6% 22.2% 56.8% 20.5%
Attachment 51.3% 5.1% 100.0% 31.6%
Torrent 4.1% 3.7% 64.5% 66.3%
Live 13.1% 9.9% 42.1% 39.1%

Table 2: Types of output produced by each feed. We use each out-
put as a behavioral summary for clustering, if present.

In addition to network monitoring, our system collects operating
system events, including process creation, file modifications, and
registry changes. Prior to shutdown, we take a screen capture of the
running system for use during the automated clustering step which
leverages visible content.

3.3 Automated Clustering
In order to minimize polymorphism and guide analysts towards

the most prominent families of malware, we cluster executions with
similar behavioral signatures, as in our previous PPI work [4]. Our
approach targets four characteristics: the domains a malware sam-
ple contacts, the HTTP requests it makes, any system modifica-
tions, and finally the layout of the windows it spawns, captured by a
screenshot. Table 2 summarizes which classes of binaries perform
each of the aforementioned actions and highlights why no single
approach is sufficient.

Our clustering draws from a long lineage of behavioral-based
malware classification [2, 3, 33]. Building on this work, we make
a number of improvements to clustering network traffic, as well
as offer new techniques for clustering binaries with no system or
network side-effects.
Domains: Domain-based clustering identifies binaries that con-
tact the same hosts, whether they are C&C servers or test
connections (such as a request to google.com). We tokenize
domains by extracting increasingly specific subdomains. For
instance, we tokenize mail.lebanon-online.com as {com,
lebanon-online.com, mail.lebanon-online.com}. Once to-
kenized, we consider each token as an independent feature vec-
tor. We produce clusters by grouping binaries with identical fea-
ture vectors (e.g., all binaries that contact a com top-level domain,
or that contact the lebanon-online.com domain). As a result,
we can place a single binary into multiple clusters. To avoid some
overly broad clusters, we omit clusters that match a manually gen-
erated whitelist of domains and tokens that are too generic, such as
domains contacted by Windows during initialization, independent
of the presence of malware. While we could consider more sophis-
ticated approaches for clustering domains [48], our approach works
well in practice, and analysts find it easy to interpret. However, due

to the ephemeral nature of malicious domains, new clusters appear
over time, which requires re-labeling. To avoid this limitation, we
consider a number of other clustering approaches.
HTTP Arguments: For binaries that produce an HTTP request,
we examine the User-Agent string tied to the request as well as
GET and POST arguments. We produce tokens by splitting a re-
quest’s parameters on any non-alphanumeric character. For in-
stance, /forum/showthread.php?page=5fa58 is tokenized as
{forum, showthread, php, page, 5fa58}. We then take the result-
ing set of tokens and generate all possible combinations, treating
each unique combination as an independent feature vector. A clus-
ter consists of all binaries with identical feature vectors (e.g., all bi-
naries with HTTP requests containing just the tokens showthread
and 5fa58, with separate clusters for binaries containing all the
aforementioned tokens). Our aim with this approach is to capture
increasingly specific HTTP parameters, while at the same time ac-
counting for natural variations to HTTP requests such as times-
tamps that would otherwise prohibit direct matching. The advan-
tage of clustering on HTTP arguments is that while domains change
due to takedown, the protocols for communicating with a C&C
server are more stable and thus easier to cluster on.
System Modifications: We can also assess variation amongst mal-
ware families by the changes made to a system upon installation,
including the names of spawned processes, the paths and values
of new, deleted, or modified registry keys, and the paths of new,
deleted, or modified files. Due to the adversarial nature of anti-virus
signatures, many of these modifications will incorporate purposeful
randomization to thwart matching. Nevertheless, we tokenize each
of the aforementioned values based on non-alphanumeric charac-
ters and compute all possible combinations using the same ap-
proach as HTTP arguments. In order to avoid clustering on changes
to the Windows system that result from benign Windows code that
runs simultaneously alongside malware, we generate a whitelist of
actions that occur across all binaries, including a manually labeled
set of benign samples. We take care to not simply whitelist pro-
cesses in the event that malware injects into a previously benign
process.
Screenshots: Our final approach to clustering groups binaries by a
screen capture of the Windows machine after a binary sample has
run its course, just prior to tearing down the virtual environment.
Screen captures aid immensely with identifying fake anti-virus and
other software that solicits a user response but does not produce any
network activity or system changes in the absence of user interac-
tion. Anderson et al.used image shingling combined with clustering
to identify similar spam web pages [1]; similarly, we seek to clus-
ter malware with similar UI components. For two screenshots m
and n, we begin by computing each image’s histogram, H(m) and
H(n). A histogram, H(m), contains the number of pixels, xm,i,

825

(a) Fake Anti-Virus Warning (b) Blank Screen

(c) Fake Anti-Virus Histogram

(d) Blank Screen Histogram

Figure 3: Sample output of image clustering. We identify a num-
ber of fake software campaigns that otherwise produce no network
activity or system modifications based on differences in screenshot
histograms.

in each bin, i, corresponding to an 8-bit bin for each of the red,
green, and blue color bands (each band is analyzed separately, to-
taling 768 bins). To compare the two images, we calculate the root
mean squared deviation between the two histograms:

RMSD(H(m), H(n)) =

√∑n
i=1(xm,i − xn,i)2)

n
(1)

If this difference is smaller than a manually determined threshold
τ , we consider the two images as identical, and cluster them. We
do not require exact duplication to allow subtle window variations
such as different banners and text. Via feedback from analysts, we
adopt a τ value of 100 for screenshots with a size of 1024x768.
Figure 3 shows two clusters identified by this approach: a fake anti-
virus warning, and an executable with no windows, along with their
histograms.
Discussion: Each of the clustering techniques was included be-
cause of the ability to discern specific features in malware. For ex-
ample, the Fake WinZip family of malware (see Table 3) does not
produce network traffic or system modifications; however, screen-
shot clustering quickly and accurately identifies this family of mal-
ware. System modifications were critical to identify Bitcoin mining
bots, which have no UI components and produce only test network
connections. We can easily identify the mining bots by the creation
of a new file named “nvcuda.dll” (the NVIDIA CUDA library). For

the majority of the families of malware we find, network features
provide the most utility for clustering binaries.

3.4 Manual Classification
For the final step in our analysis pipeline, we perform manual

analysis of cluster reports. Here, analysts (e.g., conscripted secu-
rity researchers) review large clusters of binaries with similar be-
havior and compare them against public reports. Manual analysis
is required to wade through the multitude of family names and the
inaccuracy inherent in family labels. We also examine a sample’s
screenshot, file modifications, and network behavior to determine
how a sample monetizes an infected host. In the event we could
not locate a corresponding public family name, we apply a generic
cluster label. Note that even in these cases, we can still identify the
monetization technique for the cluster.

4. DRIVEBY DOWNLOAD ANALYSIS
In this section we provide a detailed investigation of the lifecy-

cle of driveby downloads and the popularity of exploit kits. We find
popular exploit kits including Blackhole and Incognito account for
over 47% of all pages serving exploits. These kits are used to in-
stall at least 32 identifiable families of malware, which cover the
spectrum of monetization techniques, highlighting the importance
of the exploit-as-a-service market to the malware ecosystem. We
compare the other infection vectors in our dataset to drivebys and
find only droppers and live traffic carry similar malware variants.

Using passive DNS data, we examine the volume of traffic that
domains hosting exploits receive, as well as their lifetime, finding
exploit domains have a median lifetime of a mere 2.5 hours before
disappearing. We also assess the impact of Google Safe Browsing
on the lifetime of drivebys, and conclude with trends we identify in
the malware monetization techniques.

4.1 Comparison of Infection Vectors
We begin with a comparison of the binaries installed by driveby

exploits and those found in other infection vectors. Table 3 shows
a ranking of malware families based on the percent of binaries in
each feed that belonged to a particular family. For instance, 12%
of binaries installed by drivebys were Emit, a dropper that installs
other malware families. We note that torrents and live traffic contain
a great deal of goodware, resulting in low percentages of malware.

In terms of variants, driveby downloads are dominated by drop-
pers, information stealers, and fake antivirus. Some of the same
families such as Emit and ZeroAccess (otherwise called Sirefef)
are also distributed by droppers, indicating that malware authors
often choose multiple vectors to obtain infections. By contrast, our
attachment feed is dominated by worms that are relics from nearly
9 years ago. While these families represent a sizeable number of bi-
naries, their command and control infrastructure has long been dis-
mantled, relegating the worms to merely propagating. Surprisingly,
the vast majority of pirated software is benign. Those torrents that
do contain malware are primarily focused on spyware and adware,
with the exception of ZeroAccess.

We find that live traffic from Arbor represents a cross-section of
all our feeds, though it only captures a subset of the prominent fam-
ilies. In summary, the most notorious malware variants currently
active are found only in drivebys and droppers. Furthermore, no
single feed is a panacea for obtaining a representative sample of
all malware variants. This leaves a significant hurdle for malware
research, requiring malware studies to infiltrate pay-per-install ser-
vices, develop tools to identify driveby downloads, and simulta-
neously capture the plethora of other infection vectors used in the
wild.

826

Rank Driveby Dropper Attachment Torrent Live

1 Emit (12%) Clickpotato (6%) Lovegate (44%) Unknown Adware.A (0.1%) TDSS (2%)
2 Fake WinZip (8%) Palevo (3%) Mydoom (6%) Sefnit (0.07%) Clickpotato (1%)
3 ZeroAccess (5%) NGRBot (2%) Bagle (1%) OpenCandy (0.07%) NGRBot (1%)
4 SpyEye (4%) Gigabid (2%) Sality (.5%) Unknown Adware.B (0.06%) Toggle Adware (0.5%)
5 Windows Custodian (4%) ZeroAccess (2%) TDSS (.1%) ZeroAccess (0.01%) ZeroAccess (0.3%)
6 Karagany (4%) Emit (1%) Emit (.03%) Whitesmoke (0.01%) Gigabid (0.2%)
Total 32 families 19 families 6 families 6 families 40 families

Table 3: Most prominent families per infection vector by number of distinct binaries in each family, along with total families per vector.

Statistic Count

Initial Driveby URLs 77,353
Initial Driveby Domains 16,302
Final Driveby URLs 13,998
Final Driveby Domains 6,309
Distinct Binaries from Drivebys 10,308

Table 4: Breakdown of driveby download datasets.

4.2 Components of a Driveby Download
Delving into our driveby malware, we examine how victims

reach driveby downloads. For each binary that a driveby installs,
we know the initial URL that directed a visitor to an exploit, the
final URL that hosted the malware, and the family and monetiza-
tion of the malware installed. Table 4 provides a summary of our
dataset. In total, we receive 4,967 distinct binaries from Google
Safe Browsing (as determined by MD5 sum) that are directed to by
77,353 initial URLs. In addition, we have 5,341 binaries installed
by Blackhole and Phoenix that we use to understand malware fam-
ilies installed.2

We manually analyzed a sample of initial URLs and determined
that they represent compromised legitimate sites, while we find that
final URLs reflect dedicated infection sites hosting malware. (We
provide further evidence of these observations in Section 4.4.) Ex-
amining the complexity of the infection chain, we find that 99.8%
of initial pages lead to an exploit hosted on a different domain.
We find over 46% of final domains are linked to by more than one
initial URL, indicating driveby controllers infect multiple sites in
order to maximize traffic while an exploit domain is alive. (Clearly,
this fan-in could be much higher, since we may not have all initial
URLs in our data-gathering.) Due to takedown and blacklisting of
final driveby domains, 43% of initial domains redirect to more than
one exploit domain. This may also be the result of demultiplexing
traffic from a single initial URL to multiple miscreants willing to
pay for traffic to their exploit page. Finally, 23% of final domains
installed more than one family of malware.

4.3 The Role of Exploit Packs

4.3.1 Identifying Exploit Packs
We determine the exploit pack associated with a driveby down-

load from Google’s Safe Browsing list using similar techniques
to those described in Section 3.3; in particular, automated cluster-
ing and manual analysis. We use a combination of three sources
of ground truth to identify kits: access to exploit pack code for
2It is important to note that when we analyze URL breakdowns and
exploit kit popularity, we only use the Safe Browsing binaries, to
avoid biasing our data towards specific exploit kits. In particular,
we do not use the Blackhole/Phoenix feed, which would of course
provide a bias towards those exploit kits.

Ranking Pack Initial Final

1 Blackhole 4,828 28% 1,075 29%
2 Incognito 1,779 10% 504 13%
3 Unknown.1 699 4% 74 2%
4 Sakura 393 2% 122 3%
5 Crimepack 219 1% 17 <1%
6 Unknown.2 200 1% 48 1%
7 Bleeding Life 188 1% 20 <1%
8 Phoenix 164 <1% 73 2%
9 Eleonore 34 <1% 14 <1%
– Executable 8,186 49% 1,656 45%

Table 5: Popular exploit packs and the number of initial and final
domains that lead to each. Executable indicates that the final URL
ended with “.exe”. To date we have been unable to attribute #3 and
#6 on the list to a known exploit pack.

Blackhole, Eleonore, Phoenix, and Crimepack (typically obfus-
cated PHP); traces of traffic from live instances of other exploit
kits; and community knowledge.

For all final URLs, we automatically generate clusters based on
the query parameters embedded in each URL. An analyst then ap-
plies the appropriate label to each cluster. For instance, we know
that a URL with parameters matching w.php?f=(.*?)&e=(.*?)
belongs to Blackhole. We find these patterns are consistent across
distinct domains due to the software-as-a-service nature of exploit
kits; a single miscreant authors a kit and then sells it to multiple
parties whom each run it on their own domains. As a result, ma-
jor variations between URLs only appear in the domains, not the
format of the URLs. For rare instances when we cannot identify a
cluster, we provide an arbitrary label. In total, we identify 10 dis-
tinct clusters of exploit packs containing 92% of all URLs from the
Google Safe Browsing list. We could not cluster the remaining 8%
of URLs.

4.3.2 Exploit Kit Popularity
Table 5 shows a breakdown of the most popular exploit kits. Over

47% of initial domains terminate at an exploit kit, indicating the
driveby ecosystem is permeated by exploit packs. Blackhole has
the highest popularity, accounting for 28% of initial domains that
led to an exploit. Incognito follows in popularity, along with a short
list of other kits. Of the top 9, we could not identify two clusters.
The remaining 49% of initial domains are found in URLs that link
directly to malware executables. While these requests certainly re-
flect a successful exploit, we are unable to identify if an exploit
pack was responsible.

4.3.3 Malware Families by Exploit Pack
Exploit kits drive the exploit-as-a-service ecosystem, allowing

any miscreant to infect victims with their flavor of malware. We
find that 77% of final domains that rely on exploit kits serve only a

827

Family E
x e

cu
ta

bl
e

B
la

ck
ho

le
In

co
gn

ito

U
nk

no
w

n.
1

Sa
ku

ra
C

ri
m

ep
ac

k

U
nk

no
w

n.
2

B
le

ed
in

g
L

if
e

Ph
oe

ni
x

E
le

on
or

e

Zero Access 3 3 – 3 3 – – – – –
Windows Custodian 3 – – – – – – – – –
Karagany 3 3 – – – – – – – –
Spyeye 3 3 3 – – – – – – –
TDSS 3 – – 3 – – – – – –
Cluster A 3 3 – 3 – – – – 3 –
Zbot 3 3 – – – – – – 3 –
Multi Installer – – – – – – – – – –
Medfos – 3 3 3 3 – – – – –
Cluster B – 3 – 3 – – – – – –
clickpotato 3 – – – – – – – – –
Perfect Keylogger 3 – – – – – – – – –
Emit 3 – – – – – – – – –
Sality – – – – – – – – – –
Votwup – – – – – – – 3 – –
Fake Rena – 3 – – 3 – – – 3 –
Cluster C 3 3 – – – – – – – –

Table 6: Malware families installed by different exploit packs, or-
dered by popularity (Section 4.4). Sality and Multi Installer were
installed by a unique set of URLs that we could not attribute to an
exploit pack.

single family of malware. If we aggregate these families across ex-
ploit kits, the multiple actors within the driveby ecosystem all using
the same kit become apparent. Table 6 shows a mapping between
exploit kits and the most popular malware families in our dataset.
A checkmark indicates that a family was seen being distributed via
a particular kit.

We find that Blackhole is far and away used to install the most
variants of malware, indicating a wide range of malware authors
rely on Blackhole’s services. After Blackhole comes the as-yet-
unidentified kit Unknown.1, along with Phoenix. Given that any-
one can purchase a kit, we find it surprising to see Incognito and
Bleeding Life used predominantly to distribute a single malware
family. In particular, 92% of the domains leading to Incognito de-
livered Spyeye, an information stealer, while 59% of the installs
performed by Bleeding Life were Votwup, a DoS bot. For three
exploit packs, Crimepack, Unknown.2, and Eleonore, despite their
relative popularity in Table 5, we do not observe them dropping
popular families of malware, and in general we only find a few dis-
tinct MD5s distributed by all three packs.

In summary, our findings illustrate the complex relationships in
the exploit-as-a-service market where single exploit kits are used
by multiple miscreants, each chasing their own profits. Even if a
single exploit kit disappears, a multitude of kits can take its place.

4.4 Driveby Popularity & Duration
For the last component of our analysis, we examine the volume

of traffic that initial and final domains in the driveby infection chain
receive. We find that domains that host exploit kits remain active
for a median of only 2.5 hours. These domains receive a limited
volume of traffic from several compromised websites. From these
traffic estimates, we provide a unique perspective on the most pop-
ular malware families installed by the exploit-as-a-service market,
as well as the impact of Google Safe Browsing on the lifetime of
driveby domains.

Statistic Value

Average Daily DNS Lookups 726,631,152
Average Daily Unique Lookups 75,915,099
Average Daily Registered Domains 9,691,212
Total Compressed Size (3/1/12–4/20/12) 3.58 TB

Table 7: Daily statistics for DNS dataset spanning March 1, 2012
to April 20, 2012.

Figure 4: The SIE passive DNS data set contains DNS responses
returned to recursive resolvers and authoritative servers. When a
client attempts to resolve a domain, it contacts the recursive re-
solver configured by the ISP (¶); if the resolver does not have a
cached entry for the domain, it contacts the relevant authoritative
servers to resolve the domain for the client (·); the resulting re-
sponses appear in the SIE passive DNS feed (¸).

4.4.1 Estimating DNS Traffic
To estimate the volume of traffic to driveby related domains, we

obtained a dataset of passive DNS lookups recorded by the Secu-
rity Information Exchange (SIE).3 Our subset of the data consists
of an average of 726 million daily DNS requests recorded from
135 distinct network vantage points over the course of March 1,
2012 to April 20, 2012. While the vantage points span numerous
geographic locations and include a diversity of network environ-
ments, one US residential ISP heavily dominates the data, account-
ing for 75.6% of all lookups. As such, our analysis mainly charac-
terizes users of this ISP, but the dataset also includes traffic from
at least 9 other distinct networks providers spanning 18 cities and
3 countries. Table 7 summarizes the dataset; an average day in-
cludes 75 million unique DNS lookups to nearly 10 million regis-
tered domains. Identifying the 22,071 domains we know are tied
to driveby downloads requires scanning through 3.58TB of com-
pressed data in a MapReduce environment.

Figure 4 shows the process of how a DNS lookup appears in
our dataset. When a client makes a DNS request, it first contacts
its local resolver (¶). If the resolver has the answer in its cache,
it replies immediately and does not generate a log entry in the
SIE dataset. Conversely, upon a cache miss the resolver fetches the
record from another resolver further up in the DNS hierarchy (·).
The SIE dataset contains all DNS responses returned to queries
performed by participating resolvers; we do not see direct lookups
from clients, nor does the dataset reveal the client IP addresses (¸).
Each lookup contains the IP address of the DNS resolver, the outgo-
ing query parameters, and the subsequent response, including do-
mains, the reply’s TTL, and associated A and NS records.

We must address a number of challenges to take the DNS
lookups in this dataset and generate from it estimates of the total
3https://sie.isc.org/

828

volume of requests to driveby downloads (and, similarly, estimates
of the number of clients affected). We define three sources of im-
precision with the dataset:
Caching errors result from DNS caching at a resolver. When a
client makes a lookup, we only see that lookup if it does not hit
the resolver’s cache. Furthermore, as TTLs differ across domains,
a direct comparison between two domains without accounting for
caching would lead to inaccuracy. Without accounting for caching
errors, we would underestimate the volume of traffic to a domain.
Revisit errors occur for domains that the same client repeatedly
queries over time. Revisit errors only affect estimates of the number
of clients that request a domain. If we naively assume all clients
only request a domain once, we will overestimate the number of
clients accessing a driveby domain.
Unrelated query errors occur for compromised domains where
only some of the domain’s pages serve driveby downloads. For in-
stance, if an attacker can only gain control of a specific subdirec-
tory on a webserver, counting the number of DNS lookups to the
domain will overestimate the volume of traffic flowing to a driveby
exploit due to other legitimate traffic.

In order to account for caching errors, we adopt an approach de-
scribed by Rajab et al. [32] to estimate the number of DNS lookups
masked by caching. Specifically, DNS lookups are modeled as a
Poisson process with query rate λ (if the query rates are not Pois-
son, this model introduces error, thus we emphasize our results
should be used to rank the relative popularity of domains and not
as exact estimates). We can estimate this rate from the interarrival
times of valid DNS lookups. For a single resolver r, we calculate
the interarrival time between two packets at time Ti and Ti+1 as the
difference between the end of the TTL window for the first request
until the second request:

∆Tri = Tri+1 − Tri − TTL (2)

Given a series of DNS lookups D, the query rate λ can be approx-
imated as:

λr ≈ D
D∑
i=1

∆Tri

(3)

Due to the additive nature of Poisson processes, estimating λ across
all resolvers is simply the summation of individual λr estimates:

λ =

R∑
i=1

λr (4)

We estimate the query rate λ for all of the domains in our dataset
on a daily basis and project them to daily traffic estimates V by
calculating the time between the first and last lookup for the day
and the expected lookups per unit time:

Vdaily = (Tmax − Tmin) · λdaily (5)

For initial domains, many of which are compromised, this es-
timation approach is a requirement due to the frequency of DNS
requests that can occur during a TTL cache window. The median
interarrival time for requests for initial domains in our dataset is
4.5 minutes, 30% of which happen within one TTL window. For
the final domains that host driveby exploits, these estimates prove
unnecessary since the interarrival time of DNS lookups far exceeds
the TTLs, leaving a small likelihood of a cache hit while the TTL
is alive. The median TTL for final domains is only 30 seconds,
while the median interarrival time of visits is 16 minutes. Coupling
domain TTLs with their associated interarrival times, we find that
fewer than 10% of queries happen within one TTL window.

Family Monetization Volume Feeds

ZeroAccess Dropper 35.0% D,T,L
Windows Custodian FakeAV 10.3% -
Karagany Dropper 9.5% D
SpyEye Info Stealer 8.0% D
TDSS Info Stealer 5.6% A,L
Cluster A Browser Hijacking 5.1% -
Zbot Info Stealer 5.0% D
Multi Installer Dropper 3.0% -
Medfos Browser Hijacking 2.6% -
Cluster B FakeAV 2.2% -
Clickpotato Adware 2.1% D,L
Perfect Keylogger Info Stealer 1.9% L
Emit Dropper 1.8% D,A,L
Sality Dropper 1.7% A
Votwup Denial of Service 1.6% -
Fake Rena FakeAV 1.5% -
Cluster C Info Stealer 0.7% -

Table 8: Malware families ranked by traffic to the exploit domains
hosting the family, along with whether the same family appeared in
other feeds: (D)roppers, (A)ttachments, (T)orrents, and (L)ive.

Apart from caching errors, revisit errors and unrelated query er-
rors have no simple solution. However, we find that most domains
that host exploits are short-lived and not compromised, eliminat-
ing unrelated query errors that result from extraneous traffic (see
Section 4.4.3). This leaves revisit errors, where the same client vis-
iting a popular compromised site may make multiple DNS requests
for domains hosting exploits. Servers that use “cloaking” to pre-
vent clients from receiving an exploit more than once can lead us
to overestimate the number of infected clients. As such, we only
speak about exploit domains in terms of popularity and visits, not
the number of successful infections.

4.4.2 Popularity of Malware Families Installed
Rather than ranking malware families by the number of variants

(unique MD5s) as we did in Table 3, we use our estimates for the
number of visits to driveby domains to determine the popularity of
families installed. To start, for all of the final domains that launch
an exploit, we estimate the total number of visits V each domain
received during its lifetime, where V is the expected number of
visits within a time period T given an estimated interarrival rate
of DNS lookups independent of caching λ (explained in detail in
Equation 5). We also know the set of exploit domains E that in-
stalled a particular malware family when the exploit domain was
visited. Combined, we can then calculate the popularity of a family
as:

Popularity(family) =
∑
i∈E

Vi

Table 8 shows our results, with volume indicating the fraction of all
DNS traffic to drivebys that belongs to a particular family. In total,
we estimate that driveby exploit pages were queried 47,250 times
over the course of 60 days. We find that 35% of these lookups are
to domains hosting ZeroAccess, a dropper that can install a variety
of other malware variants. This same family is also found in our
dropper feed, torrents, and live traffic, indicating that miscreants
rely on a multitude of infection vectors to propagate. The remainder
of the list is dominated by fake anti-virus software, information
stealers including SpyEye, and other droppers. Spam is noticeably
absent from the top ranking, something mirrored in our other feeds.

829

4.4.3 Domain Duration
We estimate the uptime duration of a domain as the time between

the first lookup that returns a valid A record until the time of the last
valid lookup. Given the large size of the ISP predominant in our
DNS data, such an estimate might not prove too far off from the
true global duration of a domain, for instances of broadly targeted
domains that will appear indiscriminately in the ISP’s DNS traffic.

Figure 5 shows our results. Final domains are short lived, with a
median duration of 2.5 hours. As such, parties searching for drive-
bys require constant vigilance in order to detect the fast churn of
malicious domains. In contrast, the initial domains that direct traf-
fic to exploits have existed for a median of 44 days, with our data
spanning a maximum of 60 days. This reiterates that many of the
pages that funnel traffic to exploits are legitimate, compromised
websites.

We perform the same duration analysis for domains contacted by
binaries installed by driveby infections (denoted executions). Sur-
prisingly, we find a similar behavior to initial domains. We man-
ually analyze a sample of the connections that binaries make and
find many domains belong to test connections or C&C infrastruc-
ture on compromised hosts. As such, estimating the population of
clients infected with a family (not just visitors to those domains)
based on DNS traffic (using the technique of Rajab et al. [32]) is
wrought with revisit errors and unrelated query errors.

4.4.4 Popularity of Initial Domains
Apart from the final domains that host exploits, we also examine

the relative popularity of websites that funnel traffic to drivebys.
For ethical reasons, we do not reveal the names of popular com-
promised domains. Instead, we offer the volume of visitors they
receive as a metric of their importance. We use our estimates of
DNS lookups V , averaging lookups per domain. We find that a me-
dian site exhibits only 30 DNS lookups per day in our DNS dataset.
However, 1% of initial domains receive over 22,548 estimated DNS
lookups per day. To offer a comparison, in the dataset google.com
receives an estimated 87,442 daily lookups. These results highlight
that browser exploits are not relegated solely to obscure portions
of the web, but include popular content that victims may regularly
browse.

4.4.5 Safe Browsing Performance & Impact
The final metric we derive from DNS lookups concerns the im-

pact of Google Safe Browsing on the lifetime of final domains
hosting exploits. To perform the analysis, we draw upon a list of
fine-grained timestamps corresponding to when Google identified
each of the final domains in our dataset. We note that only 22% of
final domains appear in the list, and these exhibit a bias towards
longer living domains, with a median duration of 2 days compared
to 2.5 hours.

From the passive DNS logs, we determine the first appearance
of a valid DNS lookup to a domain tmin and the last valid lookup
tmax. We can then estimate the time before a malicious domain is
identified by Google as tlisted − tmin. Similarly, we can estimate
the time a domain continues to receive traffic after it has been listed
as tmax − tlisted. Figure 6 shows a CDF of this calculation for all
of the final domains in our dataset. A median malicious domain
receives traffic for 17 hours before Google flags it, and continues to
receive traffic for 11 hours after it is listed. These metrics reiterate
the fast churn rate of driveby domains and the inherent challenge
of tracking down newly created malicious sites.

The remaining 78% of final domains not flagged by Safe Brows-
ing directly were identified only because of previously identified
initial and intermediate URLs that lead to new final domains. As

Domain duration (seconds)

F
ra

c
ti
o
n
 o

f
d
o
m

a
in

s

0.0

0.2

0.4

0.6

0.8

1.0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

source

execution

final

initial

Figure 5: Length of time we see valid DNS requests and re-
sponses. This includes initial domains that funnel traffic, final do-
mains which host exploits, and lastly domains contacted by mal-
ware once installed.

Time (seconds)

F
ra

c
ti
o
n
 o

f
d
o
m

a
in

s

0.0

0.2

0.4

0.6

0.8

1.0

10
2

10
3

10
4

10
5

10
6

type

Time available after listing

Time available before listing

Figure 6: Time between miscreants creating a domain (first DNS
lookup) until the domain is flagged by Google Safe Browsing, and
subsequently, the time until the domain no longer receives traffic
(e.g. unregistered, abandoned).

final domains tend to have short lifetimes, focusing on identifying
initial URLs is more likely to help prevent users from visiting ex-
ploit sites.

4.5 Discussion
We briefly discuss some of the important lessons we learned

through our analysis and how we believe our findings should im-
pact the development of new driveby detection technologies.
Malware diversity: Our malware feeds demonstrate that no single
source of binaries is exhaustive; droppers, drivebys, email, warez,
and live traffic all distribute binaries with various degrees of over-
lap. Furthermore, not all working malware samples produce net-
work traffic, and those that do often contact compromised web-
sites that simultaneously receive legitimate traffic, complicating
network-based estimates of infections and clustering.
Crawler-based detection: The use of crawlers to identify mali-
cious URLs often suffers from a few shortcomings, including the

830

challenge of identifying the continuous churn of short lived exploit
domains and cloaking [30] employed by exploit kits. Future detec-
tion strategies would benefit from targeting the handful of exploit
packs that exist, and in-browser defenses (deployed where detec-
tion must occur before a vulnerability is exploited) [22] remove
some of the challenges surrounding cloaking and locating (not de-
tecting) malicious websites.
Pay-per-install vs. exploit-as-a-service: Our prior work illustrated
how the pay-per-install market plays a central role in the delivery
of a diverse set of widespread malware families [4]. As we have
shown, driveby downloads are also responsible for delivering pop-
ular droppers. We believe that while pay-per-install and drivebys
might compete for some clients, they also serve complementary
functions. By enabling PPI affiliates to use driveby downloads as an
infection vector, PPI programs can aggregate installs across multi-
ple exploit packs and compromised sites.

5. RELATED WORK
A number of studies have examined driveby downloads, seek-

ing to identify them on the web and exploring both their hosting
infrastructure and techniques to prevent exploits from succeeding.

Several studies have examined the prevalence of driveby down-
loads on the web. Moshchuk et al. [26] crawled 18 million URLs in
an attempt to identify malicious content. They found that of 5.9%
of the URLs crawled were driveby downloads, while 13.4% lead to
spyware. A necessary component of profiling driveby downloads is
a suitable detection engine. Curtsinger et al. [8] trained a classifier
to detect heap spray exploits in JavaScript, and use the classifier to
detect and blacklist malicious pages. Similarly, Cova et al. [7] use
a modified browser to analyze web pages and extract features that
can aid in identifying exploits that lead to driveby downloads. Their
technique was further refined by Invernizzi et al. [15].

This work builds on our previous investigation into driveby
downloads conducted by Provos et al. [29], where we examine the
prevalence of such attacks and how exploited sites appear to users
in search results and through syndicated advertisements. Provos et
al. [29] also explored the hosting and distribution of driveby down-
loads in a very large dataset. Our study reflects an extension of this
work by examining recent developments in exploitation and mal-
ware delivered by the exploits.

Polychronakis et al. examined malware distributed by driveby
downloads, focusing on the command-and-control protocols used
by malware once it executes [28]. Similarly, we use network char-
acteristics as a feature to understand malware, but focus on using
network and host-based metrics to identify malware families and
monetization techniques.

A number of systems seek to prevent drivebys from injuring
users [22, 47]. Our work differs from these since we focus on what
happens before and after the driveby exploit has actually occurred.
Our study has the potential to help guide the development of future
such prevention and detection techniques.

6. SUMMARY
We examined the current landscape of driveby downloads, fu-

eled both by the availability of exploit-as-a-service and compro-
mised websites funneling legitimate users to malicious domains.
Using two feeds of malicious URLs, we analyzed the malware that
each site distributes via drivebys and the exploit kits and services
employed to do so. We identified that nine exploit kits account for
92% of the malicious URLs in our dataset, 29% of which belong to
Blackhole. These kits are used to distribute 32 of the most promi-
nent families of malware, ranging from fake anti-virus to informa-

tion stealers and browser hijacking, an indication that the exploit-
as-a-service model plays an important role in the malware ecosys-
tem.

Using passive DNS data, we identify that the infrastructure that
hosts these exploit kits is short-lived and typically only receives
traffic for 2.5 hours. We further explored the relative popularity
of each kit and malware family, as well as the impact of Google
Safe Browsing on the availability of malicious domains. Despite the
pressures exerted by the security industry that cause rapid turnover
in driveby domains, there is still ample need to improve the state of
driveby detection and prevention. These solutions must account for
the ease by which new driveby domains can appear, as well as their
reliance on compromised websites for traffic.

7. ACKNOWLEDGEMENTS
We would like to thank the Arbor Networks ASERT Team for

providing us with malware samples and VirusTotal for access to the
thousands of virus scanner reports we used during classification.

This material is based upon work supported in part by the Na-
tional Science Foundation under Grant No. CNS-0831535. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily re-
flect the views of the National Science Foundation. This work is
partially supported by the Office of Naval Research under MURI
Grant No. N000140911081. This work is supported in part by the
European Union through Grants FP7-ICT No. 256980 and FP7-
PEOPLE-COFUND No. 229599. Juan Caballero is also partially
supported by a Juan de la Cierva Fellowship from the Spanish Gov-
ernment. Parts of this work are supported by the Federal Ministry
of Education and Research of Germany Grant 01BY1110, MoBE.

8. REFERENCES
[1] D. Anderson, C. Fleizach, S. Savage, and G. Voelker. Spamscatter:

Characterizing internet scam hosting infrastructure. In USENIX
Security, 2007.

[2] M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Jahanian, and
J. Nazario. Automated Classification and Analysis of Internet
Malware. In Proceedings of the Conference on Recent Advances in
Intrusion Detection, 2007.

[3] U. Bayer, P. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda.
Scalable, Behavior-Based Malware Clustering. In Network and
Distributed System Security Symposium (NDSS), 2009.

[4] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring
Pay-per-Install: The Commoditization of Malware Distribution. In
Proceedings of USENIX Security, 2011.

[5] J. Canto, M. Dacier, E. Kirda, and C. Leita. Large Scale Malware
Collection: Lessons Learned. In Workshop on Sharing Field Data
and Experiment Measurements on Resilience of Distributed
Computing Systems, 2008.

[6] C. Y. Cho, J. Caballero, C. Grier, V. Paxson, and D. Song. Insights
from the Inside: A View of Botnet Management from Infiltration. In
Proceedings of the USENIX Workshop on Large-Scale Exploits and
Emergent Threats, April 2010.

[7] M. Cova, C. Kruegel, and G. Vigna. Detection and Analysis of
Drive-by-Download Attacks and Malicious JavaScript Code. In
Proceedings of the 19th International Conference on World Wide
Web, 2010.

[8] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Zozzle:
Low-overhead Mostly Static JavaScript Malware Detection. In
Proceedings of the Usenix Security Symposium, 2011.

[9] T. Cymru. A Criminal Perpsective on Exploit Packs.
http://www.team-cymru.com/ReadingRoom/Whitepapers/
2011/Criminal-Perspective-On-Exploit-Packs.pdf, May
2011.

[10] J. Franklin, V. Paxson, A. Perrig, and S. Savage. An Inquiry into the
Nature and Causes of the Wealth of Internet Miscreants. In ACM
Conference on Computer and Communications Security (CCS), 2007.

831

[11] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Zhao. Detecting and
Characterizing Social Spam Campaigns. In Proceedings of the
Internet Measurement Conference (IMC), 2010.

[12] T. Holz, C. Gorecki, F. Freiling, and K. Rieck. Detection and
Mitigation of Fast-Flux Service Networks. In Proceedings of the 15th
Annual Network and Distributed System Security Symposium, 2008.

[13] F. Howard. Exploring the Blackhole Exploit Kit.
http://nakedsecurity.sophos.com/exploring-the-
blackhole-exploit-kit-3/, March 2012.

[14] W. Huang, C. Hsiao, and N. Lin. mysql.com hacked, infecting
visitors with malware.
http://blog.armorize.com/2011/09/mysqlcom-hacked-
infecting-visitors-with.html, September 2011.

[15] L. Invernizzi, P. M. Comparetti, S. Benvenuti, C. Kruegel, M. Cova,
and G. Vigna. EvilSeed: A Guided Approach to Finding Malicious
Web Pages. In IEEE Symposium on Security and Privacy, 2012.

[16] J. John, A. Moshchuk, S. Gribble, and A. Krishnamurthy. Studying
Spamming Botnets Using Botlab. In Usenix Symposium on
Networked Systems Design and Implementation (NSDI), 2009.

[17] J. Jones. The State of Web Exploit Kits. BlackHat Las Vegas, July
2012.

[18] L. Kharouni. SpyEye/ZeuS Toolkit v1.3.05 Beta.
http://blog.trendmicro.com/spyeyezeus-toolkit-v1-3-
05-beta/, January 2012.

[19] C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G. Voelker,
V. Paxson, and S. Savage. Spamcraft: An Inside Look At Spam
Campaign Orchestration. In USENIX Workshop on Large-Scale
Exploits and Emergent Threats, 2009.

[20] C. Kreibich, N. Weaver, C. Kanich, W. Cui, and V. Paxson. GQ:
Practical Containment for Measuring Modern Malware Systems. In
Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference, pages 397–412. ACM, 2011.

[21] K. Levchenko et al. Click Trajectories: End-to-End Analysis of the
Spam Value Chain. In IEEE Symposium on Security and Privacy,
pages 431–446. IEEE, 2011.

[22] L. Lu, V. Yegneswaran, P. Porras, and W. Lee. BLADE: An
Attack-Agnostic Approach for Preventing Drive-By Malware
Infections. In Proc. of the ACM conference on Computer and
Communications Security, 2010.

[23] MalwareIntelligence. Inside Phoenix Exploit’s Kit 2.8 mini version.
http://malwareint.blogspot.com.es/2011/10/inside-
phoenix-exploits-kit-28-mini.html, October 2011.

[24] Malware Domain List. http://www.malwaredomainlist.com,
July 2012.

[25] B. Miller, P. Pearce, C. Grier, C. Kreibich, and V. Paxson. What’s
Clicking What? Techniques and Innovations of Today’s Clickbots.
Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 164–183, 2011.

[26] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy. A
crawler-based study of spyware on the web. In Proceedings of the
2006 Network and Distributed System Security Symposium (NDSS),
February 2006.

[27] F. Paget. An Overview of Exploit Packs.
https://blogs.mcafee.com/mcafee-labs/an-overview-
of-exploit-packs, 2010.

[28] M. Polychronakis, P. Mavrommatis, and N. Provos. Ghost turns
Zombie: Exploring the Life Cycle of Web-based Malware. In
Proceedings of the 1st USENIX Workshop on Large-scale Exploits
and Emergent Threats, pages 1–8. USENIX Association, 2008.

[29] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All Your
iFRAMEs Point to Us. In Proceedings of the 17th Usenix Security
Symposium, pages 1–15, July 2008.

[30] M. Rajab, L. Ballard, N. Jagpal, P. Mavrommatis, D. Nojiri,
N. Provos, and L. Schmidt. Trends in Circumventing Web-Malware
Detection. Technical report, Google, July 2011.

[31] M. Rajab, L. Ballard, P. Mavrommatis, N. Provos, and X. Zhao. The
Nocebo Effect on the Web: An Analysis of Fake Anti-Virus
Distribution. In USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET), 2010.

[32] M. Rajab, F. Monrose, A. Terzis, and N. Provos. Peeking Through
the Cloud: DNS-Based Estimation and Its Applications. In Applied
Cryptography and Network Security, pages 21–38, 2008.

[33] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov. Learning
and Classification of Malware Behavior. Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 108–125, 2008.

[34] Robert Lemos. MPack developer on automated infection kit
(interview). http://www.theregister.co.uk/2007/07/23/
mpack_developer_interview, July 2007.

[35] C. Rossow, C. Dietrich, and H. Bos. Large-Scale Analysis of
Malware Downloaders. In Proceedings of 9th Conference on
Detection of Intrusions and Malware & Vulnerability Assessment,
2012.

[36] C. Rossow, C. Dietrich, H. Bos, L. Cavallaro, M. van Steen,
F. Freiling, and N. Pohlmann. Sandnet: Network Traffic Analysis of
Malicious Software. In Proceedings of the First Workshop on
Building Analysis Datasets and Gathering Experience Returns for
Security, pages 78–88. ACM, 2011.

[37] SellMeYourTraffic.com. http://www.sellmeyourtraffic.com,
May 2012.

[38] URL Query. http://urlquery.net/report.php?id=40035,
May 2012.

[39] B. Stone-Gross, R. Abman, R. Kemmerer, C. Kruegel,
D. Steigerwald, and G. Vigna. The Underground Economy of Fake
Antivirus Software. In Proceedings of the Workshop on Economics of
Information Security (WEIS), 2011.

[40] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna. Your Botnet is My Botnet:
Analysis of a Botnet Takeover. In Proceedings of the 16th ACM
conference on Computer and communications security, pages
635–647, 2009.

[41] B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna. The
Underground Economy of Spam: A Botmaster’s Perspective of
Coordinating Large-Scale Spam Campaigns. In USENIX Workshop
on Large-Scale Exploits and Emergent Threats (LEET), 2011.

[42] B. Stone-Gross, R. Stevens, A. Zarras, R. Kemmerer, C. Kruegel, and
G. Vigna. Understanding Fraudulent Activities in Online Ad
Exchanges. In Proceedings of the Internet Measurement Conference
(IMC), 2011.

[43] H. Suri. The BlackHole Theory. http:
//www.symantec.com/connect/blogs/blackhole-theory,
February 2011.

[44] K. Thomas, C. Grier, D. Song, and V. Paxson. Suspended Accounts
in Retrospect: An Analysis of Twitter Spam. In Proceedings of the
2011 ACM SIGCOMM conference on Internet measurement
conference, 2011.

[45] Traffbiz: A new malicious twist on affiliate partnerka schemes?
http://nakedsecurity.sophos.com/2012/03/01/traffbiz-
a-new-malicious-twist-on-affiliate-partnerka-
schemes/, May 2012.

[46] Trustwave Spider Labs. Catch Me If You Can, Trojan Banker Strikes
Again. http://blog.spiderlabs.com/2012/05/catch-me-
if-you-can-trojan-banker-zeus-strikes-again-part-2-
of-5-1.html, May 2012.

[47] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen,
and S. King. Automated Web Patrol with Strider HoneyMonkeys:
Finding Web Sites That Exploit Browser Vulnerabilities. In
Proceedings of the 2006 Network and Distributed System Security
Symposium (NDSS), 2006.

[48] S. Yadav, A. Reddy, A. Reddy, and S. Ranjan. Detecting
Algorithmically Generated Malicious Domain Names. In
Proceedings of the Internet Measurement Conference (IMC), 2010.

832

